Researchers Evaluate Accuracy of Online Health News Using Easily Accessible AI

It can be challenging to gauge the quality of online news - questioning if it is real or if it is fake. When it comes to health news and press releases about medical treatments and procedures the issue can be even more complex, especially if the story is not complete and still doesn’t necessarily fall into the category of fake news. To help identify the stories with inflated claims, inaccuracies and possible associated risks, researchers at the University of New Hampshire developed a new machine learning model, an application of artificial intelligence, that news services, like social media outlets, could easily use to better screen medical news stories for accuracy.

"The way most people think about fake news is something that's completely fabricated, but, especially in healthcare, it doesn't need to be fake. It could be that maybe they're not mentioning something," said Ermira Zifla, assistant professors of decision sciences at UNH's Peter T. Paul College of Business and Economics. "In the study, we're not making claims about the intent of the news organizations that put these out. But if things are left out, there should be a way to look at that."

Zifla and study co-author Burcu Eke Rubini, assistant professors of decision sciences, found in their research, published in Decision Support Systems, that since most people don’t have the medical expertise to understand the complexities of the news, the machine learning models they developed outperformed the evaluations of laypeople in assessing the quality of health stories. They used data from Health News Review that included news stories and press releases on new healthcare treatments published in various outlets from 2013 to 2018. The articles had already been evaluated by a panel of healthcare experts - medical doctors, healthcare journalists and clinical professors - using ten different evaluation criteria the experts had developed. The criteria included cost and benefits of the treatment or test, any possible harm, the quality of arguments, the novelty and availability of the procedure and the independence of the sources. The researchers then developed an algorithm based on the same expert criteria, and trained the machine models to classify each aspect of the news story, matching that criteria as "satisfactory" or "not satisfactory".

The model's performance was then compared against layperson evaluations obtained through a separate survey where participants rated the same articles as "satisfactory" or "not satisfactory" based on the same criteria. The survey revealed an "optimism bias," with most of the 254 participants rating articles as satisfactory, markedly different from the model's more critical assessments.

Researchers stress that they are by no means looking to replace expert opinion but are hoping to start a conversation about evaluating news based on multiple criteria and offering an easily accessible and low-cost alternative via open-source software to better evaluate health news.

Ermira Zifla, Burcu Eke Rubini.
Multi-criteria evaluation of health news stories.
Decision Support Systems, 2024. doi: 10.1016/j.dss.2024.114187

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...