AI Matches or Outperforms Human Specialists in Retina and Glaucoma Management

A large language model (LLM) artificial intelligence (AI) system can match, or in some cases outperform, human ophthalmologists in the diagnosis and treatment of patients with glaucoma and retina disease, according to research from New York Eye and Ear Infirmary of Mount Sinai (NYEE).

The provocative study, published February 22, in JAMA Ophthalmology, suggests that advanced AI tools, which are trained on vast amounts of data, text, and images, could play an important role in providing decision-making support to ophthalmologists in the diagnosis and management of cases involving glaucoma and retina disorders, which afflict millions of patients.

The study matched the knowledge of ophthalmic specialists against the capabilities of the latest generation AI system, GPT-4 (Generative Pre-Training–Model 4) from OpenAI, designed to replicate human-level performance. Within medicine, sophisticated AI tools are seen as potentially revolutionizing diagnosis and treatment tools through the accuracy and comprehensiveness of their LLM-generated responses. Ophthalmology, with its high volume of often complex patients, could be a particularly fertile field for AI, giving specialists more time to practice evidence-based medicine.

"The performance of GPT-4 in our study was quite eye-opening," says Andy Huang, MD, an ophthalmology resident at NYEE, and lead author of the study. "We recognized the enormous potential of this AI system from the moment we started testing it and were fascinated to observe that GPT-4 could not only assist but in some cases match or exceed, the expertise of seasoned ophthalmic specialists."

For the human side of its study, the Mount Sinai team recruited 12 attending specialists and three senior trainees from the Department of Ophthalmology at the Icahn School of Medicine at Mount Sinai. A basic set of 20 questions (10 each for glaucoma and retina) from the American Academy of Ophthalmology’s list of commonly asked questions by patients was randomly selected, along with 20 deidentified patient cases culled from Mount Sinai-affiliated eye clinics. Responses from both the GPT-4/AI system and human specialists were then statistically analyzed and rated for accuracy and thoroughness using a Likert scale, which is commonly used in clinical research to score responses.

The results showed that AI matched or outperformed human specialists in both accuracy and completeness of its medical advice and assessments. More specifically, AI demonstrated superior performance in response to glaucoma questions and case-management advice, while reflecting a more balanced outcome in retina questions, where AI matched humans in accuracy but exceeded them in completeness.

"AI was particularly surprising in its proficiency in handling both glaucoma and retina patient cases, matching the accuracy and completeness of diagnoses and treatment suggestions made by human doctors in a clinical note format," says Louis R. Pasquale, MD, FARVO, Deputy Chair for Ophthalmology Research for the Department of Ophthalmology, and senior author of the study. "Just as the AI application Grammarly can teach us how to be better writers, GPT-4 can give us valuable guidance on how to be better clinicians, especially in terms of how we document findings of patient exams."

While emphasizing that additional testing is needed, Dr. Huang believes this work points to a promising future for AI in ophthalmology. "It could serve as a reliable assistant to eye specialists by providing diagnostic support and potentially easing their workload, especially in complex cases or areas of high patient volume," he explains. "For patients, the integration of AI into mainstream ophthalmic practice could result in quicker access to expert advice, coupled with more informed decision-making to guide their treatment."

Huang AS, Hirabayashi K, Barna L, Parikh D, Pasquale LR.
Assessment of a Large Language Model's Responses to Questions and Cases About Glaucoma and Retina Management.
JAMA Ophthalmol. 2024 Feb 22:e236917. doi: 10.1001/jamaophthalmol.2023.6917

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Powerful New AI can Predict People'…

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19. The predictive system uses a small set of data from demographics...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...