Making AI a Partner in Neuroscientific Discovery

The past year has seen major advances in Large Language Models (LLMs) such as ChatGPT. The ability of these models to interpret and produce human text sources (and other sequence data) has implications for people in many areas of human activity. A new perspective paper in the journal Neuron argues that like many professionals, neuroscientists can either benefit from partnering with these powerful tools or risk being left behind.

In their previous studies, the authors showed that important preconditions are met to develop LLMs that can interpret and analyze neuroscientific data like ChatGPT interprets language. These AI models can be built for many different types of data, including neuroimaging, genetics, single-cell genomics, and even hand-written clinical reports.

In the traditional model of research, a scientist studies previous data on a topic, develops new hypotheses and tests them using experiments. Because of the massive amounts of data available, scientists often focus on a narrow field of research, such as neuroimaging or genetics. LLMs, however, can absorb more neuroscientific research than a single human ever could. In their Neuron paper, the authors argue that one day LLMs specialized in diverse areas of neuroscience could be used to communicate with one another to bridge siloed areas of neuroscience research, uncovering truths that would be impossible to find by humans alone. In the case of drug development, for example, an LLM specialized in genetics could be used along with a neuroimaging LLM to discover promising candidate molecules to stop neurodegeneration. The neuroscientist would direct these LLMs and verify their outputs.

Lead author Danilo Bzdok mentions the possibility that the scientist will, in certain cases, not always be able to fully understand the mechanism behind the biological processes discovered by these LLMs.

"We have to be open to the fact that certain things about the brain may be unknowable, or at least take a long time to understand," he says. "Yet we might still generate insights from state-of-the-art LLMs and make clinical progress, even if we don’t fully grasp the way they reach conclusions."

To realize the full potential of LLMs in neuroscience, Bzdok says scientists would need more infrastructure for data processing and storage than is available today at many research organizations. More importantly, it would take a cultural shift to a much more data-driven scientific approach, where studies that rely heavily on artificial intelligence and LLMs are published by leading journals and funded by public agencies. While the traditional model of strongly hypothesis-driven research remains key and is not going away, Bzdok says capitalizing on emerging LLM technologies might be important to spur the next generation of neurological treatments in cases where the old model has been less fruitful.

"To quote John Naisbitt, neuroscientists today are ‘drowning in information but starving for knowledge,’" he says. "Our ability to generate biomolecular data is eclipsing our ability to glean understanding from these systems. LLMs offer an answer to this problem. They may be able to extract, synergize and synthesize knowledge from and across neuroscience domains, a task that may or may not exceed human comprehension."

Bzdok D, Thieme A, Levkovskyy O, Wren P, Ray T, Reddy S.
Data science opportunities of large language models for neuroscience and biomedicine.
Neuron. 2024 Feb 7:S0896-6273(24)00042-4. doi: 10.1016/j.neuron.2024.01.016

Most Popular Now

AI in Personalized Cancer Medicine: New …

The application of AI in precision oncology has so far been largely confined to the development of new drugs and had only limited impact on the personalisation of therapies. New...

AI can Predict Brain Cancer Patients…

Artificial Intelligence (AI) can predict whether adult patients with brain cancer will survive more than eight months after receiving radiotherapy treatment. The use of the AI to successfully predict patient outcomes...

Max Planck Institute for Informatics and…

The Max Planck Institute for Informatics and Google deepen their strategic research partnership. With additional financial support from the U.S. IT company, the "Saarbrücken Research Center for Visual Computing, Interaction...

JMIR Medical Informatics Invites Submiss…

JMIR Publications has announced a new section titled, "AI Language Models in Health Care" in JMIR Medical Informatics. This leading peer-reviewed journal is indexed in PubMed and has a unique...

Paper Calls for Patient-First Regulation…

Ever wonder if the latest and greatest artificial intelligence (AI) tool you read about in the morning paper is going to save your life? A new study published in JAMA...

Could ChatGPT Help or Hurt Scientific Re…

Since its introduction to the public in November 2022, ChatGPT, an artificial intelligence system, has substantially grown in use, creating written stories, graphics, art and more with just a short...

Evaluating the Performance of AI-Based L…

A new study evaluates an artificial intelligence (AI)-based algorithm for autocontouring prior to radiotherapy in head and neck cancer. Manual contouring to pinpoint the area of treatment requires significant time...

Making AI a Partner in Neuroscientific D…

The past year has seen major advances in Large Language Models (LLMs) such as ChatGPT. The ability of these models to interpret and produce human text sources (and other sequence...

Chapman Scientists Code ChatGPT to Desig…

Generative artificial intelligence platforms, from ChatGPT to Midjourney, grabbed headlines in 2023. But GenAI can do more than create collaged images and help write emails - it can also design...

DMEA nova Award: Wanted - Visionary Solu…

9 - 11 April 2024, Berlin, Germany. The DMEA nova Award is being presented at DMEA 2024 for the first time. The award honours a digital health startup for an outstanding...

New Digital Therapy Reduces Anxiety and …

A therapist-guided digital cognitive behavioural therapy reduced distress in 89 per cent of participants living with long-term physical health conditions, a new King's College London study finds. Researchers at the Institute...

Europe's Digital Health Industry Me…

9 - 11 April 2024, Berlin, Germany. In just over two months, from 9 to 11 April 2024, DMEA, Europe's leading event for digitalisation of healthcare, will gather digital health experts...