Evaluating the Performance of AI-Based Large Language Models in Radiation Oncology

A new study evaluates an artificial intelligence (AI)-based algorithm for autocontouring prior to radiotherapy in head and neck cancer. Manual contouring to pinpoint the area of treatment requires significant time, and an AI algorithm to enable autocontouring has been introduced. The study is published in the peer-reviewed journal AI in Precision Oncology.

Nikhil Thaker, from Capital Health and Bayta Systems, and coauthors, evaluated the performance of various LLMs, including OpenAI’s GPT-3.5-turbo, GPT-4, GPT-4-turbo, Meta’s Llama-2 models, and Google’s PaLM-2-text-bison.The LLMs were given an exam comprised of 300 questions, and the answers were compared to Radiation Oncology trainee performance.

The results showed that OpenAI’s GPT-4-turbo had the best performance, with 74.2% correct answers, and all three Llama-2 models under-performed. The LLMs tended to excel in the area of statistics, but to underperform in clinical areas, with the exception of GPT-turbo, which performed comparably to upper-level radiation oncology trainees and superiorly to lower-level trainees.

"Future research will need to evaluate the performance of models that are fine-tune trained in clinical oncology," concluded the investigators. "This study also underscores the need for rigorous validation of LLM-generated information against established medical literature and expert consensus, necessitating expert oversight in their application in medical education and practice."

"The study highlights the potential of generative AI to revolutionize radiation oncology education and practice. OpenAI's GPT-4-turbo demonstrates that AI can complement medical training, suggesting a future where AI aids in improving patient outcomes. It's essential, though, to validate these technologies rigorously and involve experts to ensure their reliable and effective use in healthcare," says Douglas Flora, MD, Editor-in-Chief of AI in Precision Oncology.

Nikhil G. Thaker, Navid Redjal, Arturo Loaiza-Bonilla, David Penberthy, Tim Showalter, Ajay Choudhri, Shirnett Williamson, Gautam Thaker, Chirag Shah, Matthew C. Ward, Mihir Thaker, Michael Arcaro.
Large Language Models Encode Radiation Oncology Domain Knowledge: Performance on the American College of Radiology Standardized Examination.
AI in Precision Oncology, 2024. doi: 10.1089/aipo.2023.0007

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...