Evaluating the Performance of AI-Based Large Language Models in Radiation Oncology

A new study evaluates an artificial intelligence (AI)-based algorithm for autocontouring prior to radiotherapy in head and neck cancer. Manual contouring to pinpoint the area of treatment requires significant time, and an AI algorithm to enable autocontouring has been introduced. The study is published in the peer-reviewed journal AI in Precision Oncology.

Nikhil Thaker, from Capital Health and Bayta Systems, and coauthors, evaluated the performance of various LLMs, including OpenAI’s GPT-3.5-turbo, GPT-4, GPT-4-turbo, Meta’s Llama-2 models, and Google’s PaLM-2-text-bison.The LLMs were given an exam comprised of 300 questions, and the answers were compared to Radiation Oncology trainee performance.

The results showed that OpenAI’s GPT-4-turbo had the best performance, with 74.2% correct answers, and all three Llama-2 models under-performed. The LLMs tended to excel in the area of statistics, but to underperform in clinical areas, with the exception of GPT-turbo, which performed comparably to upper-level radiation oncology trainees and superiorly to lower-level trainees.

"Future research will need to evaluate the performance of models that are fine-tune trained in clinical oncology," concluded the investigators. "This study also underscores the need for rigorous validation of LLM-generated information against established medical literature and expert consensus, necessitating expert oversight in their application in medical education and practice."

"The study highlights the potential of generative AI to revolutionize radiation oncology education and practice. OpenAI's GPT-4-turbo demonstrates that AI can complement medical training, suggesting a future where AI aids in improving patient outcomes. It's essential, though, to validate these technologies rigorously and involve experts to ensure their reliable and effective use in healthcare," says Douglas Flora, MD, Editor-in-Chief of AI in Precision Oncology.

Nikhil G. Thaker, Navid Redjal, Arturo Loaiza-Bonilla, David Penberthy, Tim Showalter, Ajay Choudhri, Shirnett Williamson, Gautam Thaker, Chirag Shah, Matthew C. Ward, Mihir Thaker, Michael Arcaro.
Large Language Models Encode Radiation Oncology Domain Knowledge: Performance on the American College of Radiology Standardized Examination.
AI in Precision Oncology, 2024. doi: 10.1089/aipo.2023.0007

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...