Chapman Scientists Code ChatGPT to Design New Medicine

Generative artificial intelligence platforms, from ChatGPT to Midjourney, grabbed headlines in 2023. But GenAI can do more than create collaged images and help write emails - it can also design new drugs to treat disease.

Today, scientists use advanced technology to design new synthetic drug compounds with the right properties and characteristics, also known as "de novo drug design." However, current methods can be labor-, time-, and cost-intensive.

Inspired by ChatGPT's popularity and wondering if this approach could speed up the drug design process, scientists in the Schmid College of Science and Technology at Chapman University in Orange, California, decided to create their own genAI model, detailed in the new paper, "De Novo Drug Design using Transformer-based Machine Translation and Reinforcement Learning of Adaptive Monte-Carlo Tree Search," to be published in the journal Pharmaceuticals. Dony Ang, Cyril Rakovski, and Hagop Atamian coded a model to learn a massive dataset of known chemicals, how they bind to target proteins, and the rules and syntax of chemical structure and properties writ large.

The end result can generate countless unique molecular structures that follow essential chemical and biological constraints and effectively bind to their targets - promising to vastly accelerate the process of identifying viable drug candidates for a wide range of diseases, at a fraction of the cost.

To create the breakthrough model, researchers integrated two cutting-edge AI techniques for the first time in the fields of bioinformatics and cheminformatics: the well-known "Encoder-Decoder Transformer architecture" and "Reinforcement Learning via Monte Carlo Tree Search" (RL-MCTS). The platform, fittingly named "drugAI," allows users to input a target protein sequence (for instance, a protein typically involved in cancer progression). DrugAI, trained on data from the comprehensive public database BindingDB, can generate unique molecular structures from scratch, and then iteratively refine candidates, ensuring finalists exhibit strong binding affinities to respective drug targets - crucial for the efficacy of potential drugs. The model identifies 50-100 new molecules likely to inhibit these particular proteins.

"This approach allows us to generate a potential drug that has never been conceived of," Dr. Atamian said. "It's been tested and validated. Now, we’re seeing magnificent results."

Researchers assessed the molecules drugAI generated along several criteria, and found drugAI's results were of similar quality to those from two other common methods, and in some cases, better. They found that drugAI's candidate drugs had a validity rate of 100% - meaning none of the drugs generated were present in the training set. DrugAI's candidate drugs were also measured for drug-likeness, or the similarity of a compound’s properties to those of oral drugs, and candidate drugs were at least 42% and 75% higher than other models. Plus, all drugAI-generated molecules exhibited strong binding affinities to respective targets, comparable to those identified via traditional virtual screening approaches.

Ang, Rakovski and Atamian also wanted to see how drugAI’s results for a specific disease compared to existing known drugs for that disease. In a different experiment, screening methods generated a list of natural products that inhibited COVID-19 proteins; drugAI generated a list of novel drugs targeting the same protein to compare their characteristics. They compared drug-likeness and binding affinity between the natural molecules and drugAI's, and found similar measurements in both - but drugAI was able to identify these in a much quicker and less expensive way.

Plus, the scientists designed the algorithm to have a flexible structure that allows future researchers to add new functions. "That means you're going to end up with more refined drug candidates with an even higher probability of ending up as a real drug," said Dr. Atamian. "We're excited for the possibilities moving forward."

Ang D, Rakovski C, Atamian HS.
De Novo Drug Design Using Transformer-Based Machine Translation and Reinforcement Learning of an Adaptive Monte Carlo Tree Search.
Pharmaceuticals. 2024; 17(2):161. doi: 10.3390/ph17020161

Most Popular Now

Airwave Healthcare Expands Team with Fra…

Patient stimulus technology provider Airwave Healthcare has appointed Francesca McPhail, who will help health and care providers achieve more from their media and entertainment systems for people receiving care. Francesca McPhail...

Scientists Use AI to Detect Chronic High…

Researchers at Klick Labs unveiled a cutting-edge, non-invasive technique that can predict chronic high blood pressure (hypertension) with a high degree of accuracy using just a person's voice. Just published...

ChatGPT Outperformed Trainee Doctors in …

The chatbot ChatGPT performed better than trainee doctors in assessing complex cases of respiratory disease in areas such as cystic fibrosis, asthma and chest infections in a study presented at...

Former NHS CIO Will Smart Joins Alcidion

A former national chief information officer for health and social care in England, Will Smart will join the Alcidion Group board in a global role from October. He will provide...

The Darzi Review: The NHS "Is in Se…

Lyn Whitfield, content director at Highland Marketing, takes a look at Lord Darzi's review of the NHS, immediate reaction, and next steps. The review calls for a "tilt towards technology...

SPARK TSL Appoints David Hawkins as its …

SPARK TSL has appointed David Hawkins as its new sales director, to support take-up of the SPARK Fusion infotainment solution by NHS trusts and health boards. SPARK Fusion is a state-of-the-art...

Can Google Street View Data Improve Publ…

Big data and artificial intelligence are transforming how we think about health, from detecting diseases and spotting patterns to predicting outcomes and speeding up response times. In a new study analyzing...

Healthcare Week Luxembourg: Second Editi…

1 - 2 October 2024, Luxembourg.Save the date: Healthcare Week Luxembourg is back on 1 and 2 October 2024 at Luxexpo The Box. Acclaimed last year by healthcare professionals from...

AI Products Like ChatGPT can Provide Med…

The much-hyped AI products like ChatGPt may provide medical doctors and healthcare professionals with information that can aggravate patients' conditions and lead to serious health consequences, a study suggests. Researchers considered...

One in Five UK Soctors use AI Chatbots

A survey led by researchers at Uppsala University in Sweden reveals that a significant proportion of UK general practitioners (GPs) are integrating generative AI tools, such as ChatGPT, into their...

Specially Designed Video Games may Benef…

In a review of previous studies, a Johns Hopkins Children's Center team concludes that some video games created as mental health interventions can be helpful - if modest - tools...

AI may Enhance Patient Safety

Generative artificial intelligence (genAI) uses hundreds of millions, sometimes billions, of data points to train itself to produce realistic and innovative outputs that can mimic human-created content. Its applications include...