Chapman Scientists Code ChatGPT to Design New Medicine

Generative artificial intelligence platforms, from ChatGPT to Midjourney, grabbed headlines in 2023. But GenAI can do more than create collaged images and help write emails - it can also design new drugs to treat disease.

Today, scientists use advanced technology to design new synthetic drug compounds with the right properties and characteristics, also known as "de novo drug design." However, current methods can be labor-, time-, and cost-intensive.

Inspired by ChatGPT's popularity and wondering if this approach could speed up the drug design process, scientists in the Schmid College of Science and Technology at Chapman University in Orange, California, decided to create their own genAI model, detailed in the new paper, "De Novo Drug Design using Transformer-based Machine Translation and Reinforcement Learning of Adaptive Monte-Carlo Tree Search," to be published in the journal Pharmaceuticals. Dony Ang, Cyril Rakovski, and Hagop Atamian coded a model to learn a massive dataset of known chemicals, how they bind to target proteins, and the rules and syntax of chemical structure and properties writ large.

The end result can generate countless unique molecular structures that follow essential chemical and biological constraints and effectively bind to their targets - promising to vastly accelerate the process of identifying viable drug candidates for a wide range of diseases, at a fraction of the cost.

To create the breakthrough model, researchers integrated two cutting-edge AI techniques for the first time in the fields of bioinformatics and cheminformatics: the well-known "Encoder-Decoder Transformer architecture" and "Reinforcement Learning via Monte Carlo Tree Search" (RL-MCTS). The platform, fittingly named "drugAI," allows users to input a target protein sequence (for instance, a protein typically involved in cancer progression). DrugAI, trained on data from the comprehensive public database BindingDB, can generate unique molecular structures from scratch, and then iteratively refine candidates, ensuring finalists exhibit strong binding affinities to respective drug targets - crucial for the efficacy of potential drugs. The model identifies 50-100 new molecules likely to inhibit these particular proteins.

"This approach allows us to generate a potential drug that has never been conceived of," Dr. Atamian said. "It's been tested and validated. Now, we’re seeing magnificent results."

Researchers assessed the molecules drugAI generated along several criteria, and found drugAI's results were of similar quality to those from two other common methods, and in some cases, better. They found that drugAI's candidate drugs had a validity rate of 100% - meaning none of the drugs generated were present in the training set. DrugAI's candidate drugs were also measured for drug-likeness, or the similarity of a compound’s properties to those of oral drugs, and candidate drugs were at least 42% and 75% higher than other models. Plus, all drugAI-generated molecules exhibited strong binding affinities to respective targets, comparable to those identified via traditional virtual screening approaches.

Ang, Rakovski and Atamian also wanted to see how drugAI’s results for a specific disease compared to existing known drugs for that disease. In a different experiment, screening methods generated a list of natural products that inhibited COVID-19 proteins; drugAI generated a list of novel drugs targeting the same protein to compare their characteristics. They compared drug-likeness and binding affinity between the natural molecules and drugAI's, and found similar measurements in both - but drugAI was able to identify these in a much quicker and less expensive way.

Plus, the scientists designed the algorithm to have a flexible structure that allows future researchers to add new functions. "That means you're going to end up with more refined drug candidates with an even higher probability of ending up as a real drug," said Dr. Atamian. "We're excited for the possibilities moving forward."

Ang D, Rakovski C, Atamian HS.
De Novo Drug Design Using Transformer-Based Machine Translation and Reinforcement Learning of an Adaptive Monte Carlo Tree Search.
Pharmaceuticals. 2024; 17(2):161. doi: 10.3390/ph17020161

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...