AI in Personalized Cancer Medicine: New Therapies Require Flexible and Safe Approval Conditions

The application of AI in precision oncology has so far been largely confined to the development of new drugs and had only limited impact on the personalisation of therapies. New AI-based approaches are increasingly being applied to the planning and implementation of personalised drug and cell therapies. Therapies can be adapted to individual patients' needs - for example to improve efficacy and dosage, reduce toxicity, develop combination therapies and even personalise preclinical cell therapies regarding their molecular properties.

AI-based healthcare is developing continuously and with increasing speed. It can support doctors with decision-making and therapy planning as well as in early multi-cancer precision diagnostics. Other potential applications include the design of new types of personalised medical products, drug companion apps for patients and the use of so-called "digital twins". The latter use patient data in almost real-time to enable more precise diagnosis by means of simulation and modelling and to adapt treatments to individual requirements. Advancing these products through regulatory pathways is enormously challenging. They combine technologies governed by different legal frameworks and regulatory bodies and are so novel that they are not well dealt with in current legislation. It can already be anticipated that the current approval conditions will make rapid clinical application difficult.

Making approval processes more agile in the future

The publication identifies two large challenges: legislators and regulatory bodies underestimate the importance of the developing technologies in this area as well as the extent of required regulatory change to make approval processes more agile in the future. "The current regulations are a de facto blocker to AI-based personalised medicine. A fundamental change is needed to solve this problem," says Stephen Gilbert, Professor of Medical Device Regulatory Science at the Else Kröner Fresenius Center for Digital Health at TU Dresden and University Hospital Carl Gustav Carus Dresden. The researchers therefore suggest, among other things, updating risk-benefit assessments for highly personalised treatment approaches. Solutions already established in the US could also be adopted in the EU for certain classes of low-risk decision support for doctors. The authors further suggest approaches to allow digital tools on market to be safety adaptable in a more flexible manner and to establish suitable test platforms for on-market monitoring. Multi-layered approaches would help to spread the load of oversight and make evaluation more relevant to patient safety.

Employees from the following institutions were involved in the publication: EKFZ for Digital Health at TU Dresden, University Hospital Carl Gustav Carus Dresden, Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, Fraunhofer Institute for Cell Therapy and Immunology IZI (Leipzig), Institute for Clinical Immunology at University of Leipzig, University Clinic Marburg as well as the Université Paris-Saclay (Paris/France) and the life science consulting company ProductLifeGroup.

Bouchra Derraz, Gabriele Breda, Christoph Kaempf, Franziska Baenke, Fabienne Cotte, Kristin Reiche, Ulrike Köhl, Jakob Nikolas Kather, Deborah Eskenazy, Stephen Gilbert.
New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology.
npj Precision Oncology, 2024. doi: 10.1038/s41698-024-00517-w

Most Popular Now

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...