Clinical Predictive Models Created by AI are Accurate but Study-Specific

In a recent study, scientists have been investigating the accuracy of AI models that predict whether people with schizophrenia will respond to antipsychotic medication. Statistical models from the field of artificial intelligence (AI) have great potential to improve decision-making related to medical treatment. However, data from medical treatment that can be used for training these models are not only rare, but also expensive. Therefore, the predictive accuracy of statistical models has so far only been demonstrated in a few data sets of limited size. In the current work, the scientists are investigating the potential of AI models and testing the accuracy of the prediction of treatment response to antipsychotic medication for schizophrenia in several independent clinical trials. The results of the new study, in which researchers from the Faculty of Medicine of the University of Cologne and Yale were involved, show that the models were able to predict patient outcomes with high accuracy within the trial in which they were developed. However, when used outside the original trial, they did not show better performance than random predictions. Pooling data across trials did not improve predictions either. The study 'Illusory generalizability of clinical prediction models' was published in Science.

The study was led by leading scientists from the field of precision psychiatry. This is an area of psychiatry in which data-related models, targeted therapies and suitable medications for individuals or patient groups are supposed to be determined. "Our goal is to use novel models from the field of AI to treat patients with mental health problems in a more targeted manner," says Dr Joseph Kambeitz, Professor of Biological Psychiatry at the Faculty of Medicine of the University of Cologne and the University Hospital Cologne. "Although numerous initial studies prove the success of such AI models, a demonstration of the robustness of these models has not yet been made." And this safety is of great importance for everyday clinical use. "We have strict quality requirements for clinical models and we also have to ensure that models in different contexts provide good predictions," says Kambeitz. The models should provide equally good predictions, whether they are used in a hospital in the USA, Germany or Chile.

The results of the study show that a generalization of predictions of AI models across different study centres cannot be ensured at the moment. This is an important signal for clinical practice and shows that further research is needed to actually improve psychiatric care. In ongoing studies, the researchers hope to overcome these obstacles. In cooperation with partners from the USA, England and Australia, they are working on the one hand to examine large patient groups and data sets in order to improve the accuracy of AI models and on the use of other data modalities such as biological samples or new digital markers such as language, motion profiles and smartphone usage.

Chekroud AM, Hawrilenko M, Loho H, Bondar J, Gueorguieva R, Hasan A, Kambeitz J, Corlett PR, Koutsouleris N, Krumholz HM, Krystal JH, Paulus M.
Illusory generalizability of clinical prediction models.
Science. 2024 Jan 12;383(6679):164-167. doi: 10.1126/science.adg8538

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...