AI-Driven Eye Exams Increase Screening Rates for Youth with Diabetes

A Johns Hopkins Children’s Center study of children and youth with diabetes concludes that so-called autonomous artificial intelligence (AI) diabetic eye exams significantly increase completion rates of screenings designed to prevent potentially blinding diabetes eye diseases (DED). During the exam, pictures are taken of the backs of the eyes without the need to dilate them, and AI is used to provide an immediate result.

The study noted that the AI-driven technology used in the exams may close "care gaps" among racial and ethnic minority youth with diabetes, populations with historically higher rates of DED and less access to or adherence with regular screening for eye damage.

In a report on the study published Jan. 11 in Nature Communications, investigators examined diabetic eye exam completion rates in people under age 21 with type 1 and type 2 diabetes, and found that 100% of patients who underwent AI exams completed the eye assessment.

DED primarily refers to diabetic retinopathy, a potentially blinding complication of diabetes that occurs when poorly controlled sugar levels cause the overgrowth of, or damage to, blood vessels and nerve tissues in the light-sensitive retina at the back of the eye. According to the study researchers, retinopathy affects between 4% and 9% of youth with type 1 diabetes, and 4% to 15% of youth with type 2 diabetes. About 238,000 children, adolescents and young adults under age 20 are estimated to have diagnosed diabetes, according to the American Diabetes Association. Frequent screenings for DED facilitate early detection and treatment, and can help prevent progression of DED.

Generally, diabetes specialists and eye doctors recommend annual screenings, which typically require an additional, separate visit to an eye care provider, such as an optometrist or ophthalmologist, and the use of drops to dilate the pupil so that a clear view of the retina is visible through specialized instruments. However, studies show only 35% to 72% of youth with diabetes undergo recommended screenings, with even higher care gap rates among minority and poor youth. Previous studies also show that barriers to screenings include confusion about the need for screenings, inconvenience, and lack of time, access to specialists and transportation.

Previous studies by Risa Wolf, M.D., a pediatric endocrinologist at Johns Hopkins Children’s Center, and her team have found autonomous AI screening that uses cameras produce results that enable accurate DED diagnosis.

In the new study, researchers enrolled 164 participants, ranging in age from 8 to 21 years and all from the Johns Hopkins Pediatric Diabetes Center, between Nov. 24, 2021, and June 6, 2022. Some 58% were female and 41% were from minority groups (35% Black; 6% Hispanic). Some 47% of participants had Medicaid insurance. The subjects were randomly assigned to one of two groups. A group of 83 patients received the standard screening instructions and care, and were referred to either an optometrist or ophthalmologist for an eye exam. A second group of 81 patients underwent a five-to-10-minute autonomous AI system diabetic eye exam during a visit to their endocrinologist (the specialists who typically care for people with diabetes), and received their results at the same visit.

The AI system takes four pictures of the eye without dilation, and runs the images through an algorithm that determines the presence or absence of diabetic retinopathy, Wolf says. If it is present, a referral is made to an eye doctor for further evaluation. If it is absent, "you're good for the year, and you just saved yourself time," she adds.

Researchers found that 100% of patients in the group offered the autonomous AI screening completed their eye exam that day, while 22% of patients from the second group followed through within six months to complete an eye exam with an optometrist or ophthalmologist. The researchers found no statistical differences based on race, gender or socioeconomic status for whether participants in the second group scheduled the separate screening with an eye doctor.

The researchers also found that 25 out of 81 participants, or 31%, in the autonomous AI group had a result indicating that DED was present. Sixteen of those participants, or 64%, followed through in scheduling a secondary appointment with an eye care provider. Further analysis showed those who did not schedule the appointment were more likely to be Black and have Medicaid insurance.

"With AI technology, more people can get screened, which could then help identify more people who need follow-up evaluation," says Wolf. "If we can offer this more conveniently at the point of care with their diabetes doctor, then we can also potentially improve health equity, and prevent the progression of diabetic eye disease."

The investigators caution that the autonomous AI used in their study is not approved by the U.S. Food and Drug Administration for those under 21 years old. And they say a potential source of bias in the study was that some of the participants were familiar with autonomous AI diabetic eye exams from a prior study, and therefore may have been more willing to participate in the new one.

Wolf RM, Channa R, Liu TYA, Zehra A, Bromberger L, Patel D, Ananthakrishnan A, Brown EA, Prichett L, Lehmann HP, Abramoff MD.
Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: the ACCESS randomized control trial. Nat Commun. 2024 Jan 11;15(1):421. doi: 10.1038/s41467-023-44676-z

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...