New AI Tool Accurately Detects COVID-19 from Chest X-Rays

Researchers have developed a groundbreaking Artificial Intelligence (AI) system that can rapidly detect COVID-19 from chest X-rays with more than 98% accuracy. The study results have just been published in Nature Scientific Reports.

Corresponding author Professor Amir H Gandomi, from the University of Technology Sydney (UTS) Data Science Institute, said there was a pressing need for effective automated tools to detect COVID-19, given the significant impact on public health and the global economy.

"The most widely used COVID-19 test, real time polymerase chain reaction (PCR), can be slow and costly, and produce false-negatives. To confirm a diagnosis, radiologists need to manually examine a CT scans or X-rays, which can be time consuming and prone to error," said Professor Gandomi.

"The new AI system could be particularly beneficial in countries experiencing high levels of COVID-19 where there is a shortage of radiologists. Chest X-rays are portable, widely available and provide lower exposure to ionizing radiation than CT scans," he said.

Common symptoms of COVID-19 include fever, cough, difficulty breathing and a sore throat, however it can be difficult to distinguish COVID-19 from Flu and other types of pneumonia.

The new AI system uses a deep learning-based algorithm called a Custom Convolutional Neural Network (Custom-CNN) that is able to quickly and accurately distinguish between COVID-19 cases, normal cases, and pneumonia in X-ray images.

"Deep learning offers an end-to-end solution, eliminating the need to manually search for biomarkers. The Custom-CNN model streamlines the detection process, providing a faster and more accurate diagnosis of COVID-19," said Professor Gandomi.

"If a PCR test or rapid antigen test shows a negative or inconclusive result, due to low sensitivity, patients may require further examination via radiological imaging to confirm or rule out the virus's presence. In this situation the new AI system could prove beneficial.

"While radiologists play a crucial role in medical diagnosis, AI technology can assist them in making accurate and efficient diagnoses," said Professor Gandomi.

The performance of the Custom-CNN model was evaluated via a comprehensive comparative analysis, with accuracy as the performance criterion. The results showed that the new model outperforms the other AI diagnostic models.

Fast and accurate diagnosis of COVID-19 can ensure patients get the correct treatment, including COVID-19 antivirals, which work best if taken within five days of the onset of symptoms. It could also help them isolate and protect others from getting infected, reducing pandemic outbreaks.

This breakthrough represents a significant step in combatting the ongoing challenges posed by the pandemic, potentially transforming the landscape of COVID-19 diagnosis and management.

Hussein AM, Sharifai AG, Alia OM, Abualigah L, Almotairi KH, Abujayyab SKM, Gandomi AH.
Auto-detection of the coronavirus disease by using deep convolutional neural networks and X-ray photographs.
Sci Rep. 2024 Jan 4;14(1):534. doi: 10.1038/s41598-023-47038-3

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...