AI as Therapeutic Support

The face is a mirror for a person's emotional state. The interpretation of facial expressions as part of psychotherapy or psychotherapeutic research, for example, is a very effective way of characterizing how a person is feeling in that particular moment. Back in the 1970s, psychologist Paul Ekmann developed a standardized coding system to assign basic emotions such as happiness, disgust or sadness to a facial expression in an image or video sequence.

"Ekman's system is very widespread, and represents a standard in psychological emotion research," says Dr. Martin Steppan, psychologist at the Faculty of Psychology at the University of Basel.

But the process of analyzing and interpreting recorded facial expressions as part of research projects or psychotherapy is extremely time-consuming, which is why psychiatry specialists often use less reliable, indirect methods such as skin conductance measurements, which can also be a measure of emotional arousal.

"We wanted to find out whether AI systems can reliably determine the emotional states of patients in video recordings," says Martin Steppan, who developed the study together with emeritus Professor Klaus Schmeck, Dr. Ronan Zimmermann and Dr. Lukas Fürer from the UPK. The researchers published their findings in the journal Psychopathology.

No facial expression can escape AI

The researchers used freely available artificial neural networks that were trained in the detection of six basic emotions (happiness, surprise, anger, disgust, sadness and fear) using over 30,000 facial photos. This AI system then analyzed video data from therapy sessions with a total of 23 patients with borderline personality pathology at the Center for Scientific Computing at the University of Basel. The high-performance computer had to process over 950 hours of video recordings for this study.

The results were astonishing: statistical comparisons between the analysis of three trained therapists and the AI system showed a remarkable level of agreement. The AI system assessed the facial expressions as reliably as a human but was also able to detect even the most fleeting of emotions within the millisecond range, such as a brief smile or expression of disgust.

The results were astonishing: statistical comparisons between the analysis of three trained therapists and the AI system showed a remarkable level of agreement. The AI system assessed the facial expressions as reliably as a human but was also able to detect even the most fleeting of emotions within the millisecond range, such as a brief smile or expression of disgust.

These types of micro expressions have the potential to be missed by therapists or may only be perceived subconsciously. The AI system is therefore able to measure fleeting emotions with an increased level of sensitivity compared to trained therapists.

Interpersonal communication is still key

The AI analysis also uncovered something rather unexpected. Patients who demonstrated emotional involvement and smiled at the start of a therapy session went on to cancel their psychotherapy less often than people who seemed emotionally uninvolved with their therapist. This "social" smiling could therefore be a good predictor of therapy success in a person with symptoms of borderline personality pathology.

"We were really surprised to find that relatively simple AI systems can allocate facial expressions to their emotional states so reliably," says Martin Steppan.

AI could therefore become an important tool in therapy and research. AI systems could be used in the analysis of existing video recordings from research studies in order to detect emotionally relevant moments in a conversation more easily and more directly. This ability could also help support the supervision of psychotherapists.

"Nevertheless, therapeutic work is still primarily about human relationships, and remains a human domain," says Steppan. "At least for the time being."

Steppan M, Zimmermann R, Fürer L, Southward M, Koenig J, Kaess M, Kleinbub JR, Roth V, Schmeck K.
Machine Learning Facial Emotion Classifiers in Psychotherapy Research: A Proof-of-Concept Study.
Psychopathology. 2023 Nov 27:1-10. doi: 10.1159/000534811

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...