New Framework for Using AI in health Care Considers Medical Knowledge, Practices, Procedures, Values

Health care organizations are looking to artificial intelligence (AI) tools to improve patient care, but their translation into clinical settings has been inconsistent, in part because evaluating AI in health care remains challenging. In a new article, researchers propose a framework for using AI that includes practical guidance for applying values and that incorporates not just the tool's properties but the systems surrounding its use.

The article was written by researchers at Carnegie Mellon University, The Hospital for Sick Children, the Dalla Lana School of Public Health, Columbia University, and the University of Toronto. It is published in Patterns.

"Regulatory guidelines and institutional approaches have focused narrowly on the performance of AI tools, neglecting knowledge, practices, and procedures necessary to integrate the model within the larger social systems of medical practice," explains Alex John London, K&L Gates Professor of Ethics and Computational Technologies at Carnegie Mellon, who coauthored the article. "Tools are not neutral - they reflect our values - so how they work reflects the people, processes, and environments in which they are put to work."

London is also Director of Carnegie Mellon's Center for Ethics and Policy and Chief Ethicist at Carnegie Mellon's Block Center for Technology and Society as well as a faculty member in CMU's Department of Philosophy.

London and his coauthors advocate for a conceptual shift in which AI tools are viewed as parts of a larger "intervention ensemble," a set of knowledge, practices, and procedures that are necessary to deliver care to patients. In previous work with other colleagues, London has applied this concept to pharmaceuticals and to autonomous vehicles. The approach treats AI tools as "sociotechnical systems," and the authors' proposed framework seeks to advance the responsible integration of AI systems into health care.

Previous work in this area has been largely descriptive, explaining how AI systems interact with human systems. The framework proposed by London and his colleagues is proactive, providing guidance to designers, funders, and users about how to ensure that AI systems can be integrated into workflows with the greatest potential to help patients. Their approach can also be used for regulation and institutional insights, as well as for appraising, evaluating, and using AI tools responsibly and ethically. To illustrate their framework, the authors apply it to the development of AI systems developed for diagnosing more than mild diabetic retinopathy.

"Only a small majority of models evaluated through clinical trials have shown a net benefit," says Melissa McCradden, a Bioethicist at the Hospital for Sick Children and Assistant Professor of Clinical and Public Health at the Dalla Lana School of Public Health, who coauthored the article. "We hope our proposed framework lends precision to evaluation and interests regulatory bodies exploring the kinds of evidence needed to support the oversight of AI systems."

Melissa D McCradden, Shalmali Joshi, James A Anderson, Alex John London. A normative framework for artificial intelligence as a sociotechnical system in healthcare.
Patterns, 2023. doi: 10.1016/j.patter.2023.100864

Most Popular Now

Transforming Drug Discovery with AI

A new AI-powered program will allow researchers to level up their drug discovery efforts. The program, called TopoFormer, was developed by an interdisciplinary team led by Guowei Wei, a Michigan...

We may Soon be Able to Detect Cancer wit…

A new paper in Biology Methods & Protocols, published by Oxford University Press, indicates that it may soon be possible for doctors to use artificial intelligence (AI) to detect and...

Maternity Tech Launched to Help NHS Meas…

Health tech provider C2-Ai has formally launched a new 'observatory' system to help hospitals gain a better understanding of risks, outcomes and safety within maternity and neonatal services. Announced at the...

Large Language Models Illuminate a Progr…

This study is led by Prof. Bin Dong (Beijing International Center for Mathematical Research, Peking University) and Prof. Lin Shen (Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational...

Health Innovation East Partners with Cog…

Health Innovation East, the innovation arm of the NHS in the East of England and Cogniss, a no-code ecosystem for digital health solutions, have announced a strategic partnership to launch...

An AI-Powered Wearable System Tracks the…

Scientists at the University of Southern California have developed an artificial intelligence (AI)-powered system to track tiny devices that monitor markers of disease in the gut. Devices using the novel...

"Self-Taught" AI Tool Helps to…

A computer program based on data from nearly a half-million tissue images and powered by artificial intelligence (AI) can accurately diagnose cases of adenocarcinoma, the most common form of lung...

New Computational Model of Real Neurons …

Nearly all the neural networks that power modern artificial intelligence (AI) tools such as ChatGPT are based on a 1960s-era computational model of a living neuron. A new model developed...

Meet CARMEN, a Robot that Helps People w…

Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation - a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory...

AI Matches Protein Interaction Partners

Proteins are the building blocks of life, involved in virtually every biological process. Understanding how proteins interact with each other is crucial for deciphering the complexities of cellular functions, and...

AI Model to Improve Patient Response to …

A new artificial intelligence (AI) tool that can help to select the most suitable treatment for cancer patients has been developed by researchers at The Australian National University (ANU). DeepPT, developed...

Mobile Phone Data Helps Track Pathogen S…

A new way to map the spread and evolution of pathogens, and their responses to vaccines and antibiotics, will provide key insights to help predict and prevent future outbreaks. The...