AI Paves Way for New Medicines

A team of researchers from LMU, ETH Zurich, and Roche Pharma Research and Early Development (pRED) Basel has used artificial intelligence (AI) to develop an innovative method that predicts the optimal method for synthesizing drug molecules. "This method has the potential to significantly reduce the number of required lab experiments, thereby increasing both the efficiency and sustainability of chemical synthesis,” says David Nippa, lead author of the corresponding paper, which has been published in the journal Nature Chemistry. Nippa is a doctoral student in Dr. David Konrad's research group at the Faculty of Chemistry and Pharmacy at LMU and at Roche.

Active pharmaceutical ingredients typically consist of a framework to which functional groups are attached. These groups enable a specific biological function. To achieve new or improved medical effects, functional groups are altered and added to new positions in the framework. However, this process is particularly challenging in chemistry, as the frameworks, which mainly consist of carbon and hydrogen atoms, are hardly reactive themselves. One method of activating the framework is the so-called borylation reaction. In this process, a chemical group containing the element boron is attached to a carbon atom of the framework. This boron group can then be replaced by a variety of medically effective groups. Although borylation has great potential, it is difficult to control in the lab.

Together with Kenneth Atz, a doctoral student at ETH Zurich, David Nippa developed an AI model that was trained on data from trustworthy scientific works and experiments from an automated lab at Roche. It can successfully predict the position of borylation for any molecule and provides the optimal conditions for the chemical transformation. "Interestingly, the predictions improved when the three-dimensional information of the starting materials were taken into account, not just their two-dimensional chemical formulas," says Atz.

The method has already been successfully used to identify positions in existing active ingredients where additional active groups can be introduced. This helps researchers develop new and more effective variants of known drug active ingredients more quickly.

Nippa DF, Atz K, Hohler R, Müller AT, Marx A, Bartelmus C, Wuitschik G, Marzuoli I, Jost V, Wolfard J, Binder M, Stepan AF, Konrad DB, Grether U, Martin RE, Schneider G.
Enabling late-stage drug diversification by high-throughput experimentation with geometric deep learning.
Nat Chem. 2023 Nov 23. doi: 10.1038/s41557-023-01360-5

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...