AI Predicts Developmental Paths in Premature Babies

Researchers at UMC Utrecht have developed an AI model to predict long-term outcome in extremely premature babies early in life. The model can identify which infants might face intellectual disability as they grow. When further developed, it could offer crucial insights for healthcare providers as well as valuable information for parents about their child’s expected developmental journey. The results of the study have been published in The Lancet Digital Health.

Though much progress has been made in neonatal care, infants born before 28 weeks still show a very high risk for long-term difficulties with cognition and movement. Predicting these potential issues early is vital, allowing healthcare providers to tailor support right from the start. The new study marks a crucial step towards developing a tool for early detection that, in the future, could guide parents and medical teams to support vulnerable infants more effectively.

Analyzing brain activity

In essence, the AI model the researchers created was able to identify with reasonable accuracy which infants might struggle with intellectual disability later in childhood. The model analyzed recordings of the brain's electrical activity, called EEGs, of 369 infants in the first three days after birth. It was able to distinguish between infants that turned out to have a low IQ and those with optimal outcomes at early school age, with an accuracy of approximately 80 percent. "This kind of knowledge is invaluable," said neonatologist Maria Luisa Tataranno. "It means that extra help, resources, and care can be directed where they are most needed, right from the earliest days."

A glimpse into the future of extremely premature babies will not only help doctors make the right choices. It will also offer parents of premature babies valuable information. These parents often struggle with uncertainty about their child's future. "The question they ask us most often is 'What can we expect?', says Maria Luisa. "An accurate prediction could ease their worries or help them prepare for what lies ahead." She cautions that much work remains to be done to actually get such a tool to the hospital bedside, though.

Making better predictions

The UMC Utrecht team wants to continue working to improve the AI model in the coming years. "EEG is just the beginning", notes Xiaowan Wang, a PhD student in biomedical engineering and the first author of the paper. "We plan to incorporate more types of medical data such as MRI scans of the brain, as well as data about blood oxygenation and possibly even babies' movement patterns, to further refine our predictions." The goal is to create a comprehensive and accurate model that includes various health indicators.

The researchers envision a future where AI tools will help predict infants' health outcomes with high accuracy, offering every child a personalized path of care tailored to their unique needs. This study is a step towards that future, where technology and medicine intertwine to ensure the best possible start in life for all children, regardless of how early they arrive in the world.

Wang X, Trabatti C, Weeke L, Dudink J, Swanenburg de Veye H, Eijsermans RMJC, Koopman-Esseboom C, Benders MJNL, Tataranno ML.
Early qualitative and quantitative amplitude-integrated electroencephalogram and raw electroencephalogram for predicting long-term neurodevelopmental outcomes in extremely preterm infants in the Netherlands: a 10-year cohort study.
Lancet Digit Health. 2023 Dec;5(12):e895-e904. doi: 10.1016/S2589-7500(23)00198-X

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...