AI Predicts Developmental Paths in Premature Babies

Researchers at UMC Utrecht have developed an AI model to predict long-term outcome in extremely premature babies early in life. The model can identify which infants might face intellectual disability as they grow. When further developed, it could offer crucial insights for healthcare providers as well as valuable information for parents about their child’s expected developmental journey. The results of the study have been published in The Lancet Digital Health.

Though much progress has been made in neonatal care, infants born before 28 weeks still show a very high risk for long-term difficulties with cognition and movement. Predicting these potential issues early is vital, allowing healthcare providers to tailor support right from the start. The new study marks a crucial step towards developing a tool for early detection that, in the future, could guide parents and medical teams to support vulnerable infants more effectively.

Analyzing brain activity

In essence, the AI model the researchers created was able to identify with reasonable accuracy which infants might struggle with intellectual disability later in childhood. The model analyzed recordings of the brain's electrical activity, called EEGs, of 369 infants in the first three days after birth. It was able to distinguish between infants that turned out to have a low IQ and those with optimal outcomes at early school age, with an accuracy of approximately 80 percent. "This kind of knowledge is invaluable," said neonatologist Maria Luisa Tataranno. "It means that extra help, resources, and care can be directed where they are most needed, right from the earliest days."

A glimpse into the future of extremely premature babies will not only help doctors make the right choices. It will also offer parents of premature babies valuable information. These parents often struggle with uncertainty about their child's future. "The question they ask us most often is 'What can we expect?', says Maria Luisa. "An accurate prediction could ease their worries or help them prepare for what lies ahead." She cautions that much work remains to be done to actually get such a tool to the hospital bedside, though.

Making better predictions

The UMC Utrecht team wants to continue working to improve the AI model in the coming years. "EEG is just the beginning", notes Xiaowan Wang, a PhD student in biomedical engineering and the first author of the paper. "We plan to incorporate more types of medical data such as MRI scans of the brain, as well as data about blood oxygenation and possibly even babies' movement patterns, to further refine our predictions." The goal is to create a comprehensive and accurate model that includes various health indicators.

The researchers envision a future where AI tools will help predict infants' health outcomes with high accuracy, offering every child a personalized path of care tailored to their unique needs. This study is a step towards that future, where technology and medicine intertwine to ensure the best possible start in life for all children, regardless of how early they arrive in the world.

Wang X, Trabatti C, Weeke L, Dudink J, Swanenburg de Veye H, Eijsermans RMJC, Koopman-Esseboom C, Benders MJNL, Tataranno ML.
Early qualitative and quantitative amplitude-integrated electroencephalogram and raw electroencephalogram for predicting long-term neurodevelopmental outcomes in extremely preterm infants in the Netherlands: a 10-year cohort study.
Lancet Digit Health. 2023 Dec;5(12):e895-e904. doi: 10.1016/S2589-7500(23)00198-X

Most Popular Now

European Artificial Intelligence Act Com…

The European Artificial Intelligence Act (AI Act), the world's first comprehensive regulation on artificial intelligence, enters into force. The AI Act is designed to ensure that AI developed and used...

Generative AI can Not yet Reliably Read …

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care...

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

AI can Help Rule out Abnormal Pathology …

A commercial artificial intelligence (AI) tool used off-label was effective at excluding pathology and had equal or lower rates of critical misses on chest X-ray than radiologists, according to a...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

What Does the EU's Recent AI Act Me…

The European Union's law on artificial intelligence came into force on 1 August. The new AI Act essentially regulates what artificial intelligence can and cannot do in the EU. A...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...