AI Predicts Developmental Paths in Premature Babies

Researchers at UMC Utrecht have developed an AI model to predict long-term outcome in extremely premature babies early in life. The model can identify which infants might face intellectual disability as they grow. When further developed, it could offer crucial insights for healthcare providers as well as valuable information for parents about their child’s expected developmental journey. The results of the study have been published in The Lancet Digital Health.

Though much progress has been made in neonatal care, infants born before 28 weeks still show a very high risk for long-term difficulties with cognition and movement. Predicting these potential issues early is vital, allowing healthcare providers to tailor support right from the start. The new study marks a crucial step towards developing a tool for early detection that, in the future, could guide parents and medical teams to support vulnerable infants more effectively.

Analyzing brain activity

In essence, the AI model the researchers created was able to identify with reasonable accuracy which infants might struggle with intellectual disability later in childhood. The model analyzed recordings of the brain's electrical activity, called EEGs, of 369 infants in the first three days after birth. It was able to distinguish between infants that turned out to have a low IQ and those with optimal outcomes at early school age, with an accuracy of approximately 80 percent. "This kind of knowledge is invaluable," said neonatologist Maria Luisa Tataranno. "It means that extra help, resources, and care can be directed where they are most needed, right from the earliest days."

A glimpse into the future of extremely premature babies will not only help doctors make the right choices. It will also offer parents of premature babies valuable information. These parents often struggle with uncertainty about their child's future. "The question they ask us most often is 'What can we expect?', says Maria Luisa. "An accurate prediction could ease their worries or help them prepare for what lies ahead." She cautions that much work remains to be done to actually get such a tool to the hospital bedside, though.

Making better predictions

The UMC Utrecht team wants to continue working to improve the AI model in the coming years. "EEG is just the beginning", notes Xiaowan Wang, a PhD student in biomedical engineering and the first author of the paper. "We plan to incorporate more types of medical data such as MRI scans of the brain, as well as data about blood oxygenation and possibly even babies' movement patterns, to further refine our predictions." The goal is to create a comprehensive and accurate model that includes various health indicators.

The researchers envision a future where AI tools will help predict infants' health outcomes with high accuracy, offering every child a personalized path of care tailored to their unique needs. This study is a step towards that future, where technology and medicine intertwine to ensure the best possible start in life for all children, regardless of how early they arrive in the world.

Wang X, Trabatti C, Weeke L, Dudink J, Swanenburg de Veye H, Eijsermans RMJC, Koopman-Esseboom C, Benders MJNL, Tataranno ML.
Early qualitative and quantitative amplitude-integrated electroencephalogram and raw electroencephalogram for predicting long-term neurodevelopmental outcomes in extremely preterm infants in the Netherlands: a 10-year cohort study.
Lancet Digit Health. 2023 Dec;5(12):e895-e904. doi: 10.1016/S2589-7500(23)00198-X

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...