Medical AI Tool from UF, NVIDIA gets Human Thumbs-Up in First Study

A new artificial intelligence (AI) computer program created by researchers at the University of Florida and NVIDIA can generate doctors' notes so well that two physicians couldn't tell the difference, according to an early study from both groups.

In this proof-of-concept study, physicians reviewed patient notes - some written by actual medical doctors while others were created by the new AI program - and the physicians identified the correct author only 49% of the time.

A team of 19 researchers from NVIDIA and the University of Florida said their findings, published Nov. 16 in the Nature journal npj Digital Medicine, open the door for AI to support health care workers with groundbreaking efficiencies.

The researchers trained supercomputers to generate medical records based on a new model, GatorTronGPT, that functions similarly to ChatGPT. The free versions of GatorTron™ models have more than 430,000 downloads from Hugging Face, an open-source AI website. GatorTron™ models are the site’s only models available for clinical research, according to the article’s lead author Yonghui Wu, Ph.D., from the UF College of Medicine’s department of health outcomes and biomedical informatics.

"In health care, everyone is talking about these models. GatorTron™ and GatorTronGPT are unique AI models that can power many aspects of medical research and health care. Yet, they require massive data and extensive computing power to build. We are grateful to have this supercomputer, HiPerGator, from NVIDIA to explore the potential of AI in health care," Wu said.

UF alumnus and NVIDIA co-founder Chris Malachowsky is the namesake of UF’s new Malachowsky Hall for Data Science & Information Technology. A public-private partnership between UF and NVIDIA helped to fund this $150 million structure. In 2021, UF upgraded its HiPerGator supercomputer to elite status with a multimillion-dollar infrastructure package from NVIDIA, the first at a university.

For this research, Wu and his colleagues developed a large language model that allows computers to mimic natural human language. These models work well with standard writing or conversations, but medical records bring additional hurdles, such as needing to protect patients’ privacy and being highly technical. Digital medical records cannot be Googled or shared on Wikipedia.

To overcome these obstacles, the researchers stripped UF Health medical records of identifying information from 2 million patients while keeping 82 billion useful medical words. Combining this set with another dataset of 195 billion words, they trained the GatorTronGPT model to analyze the medical data with GPT-3 architecture, or Generative Pre-trained Transformer, a form of neural network architecture. That allowed GatorTronGPT to write clinical text similar to medical doctors’ notes.

“This GatorTronGPT model is one of the first major products from UF’s initiative to incorporate AI across the university. We are so pleased with how the partnership with NVIDIA is already bearing fruit and setting the stage for the future of medicine,” said Elizabeth Shenkman, Ph.D., a co-author and chair of UF’s department of health outcomes and biomedical informatics.

Of the many possible uses for a medical GPT, one idea involves replacing the tedium of documentation with notes recorded and transcribed by AI. Wu says that UF has an innovation center that is pursuing a commercial version of the software.

For an AI tool to reach such parity with human writing, programmers spend weeks programming supercomputers with clinical vocabulary and language usage based on billions upon billions of words. One resource providing the necessary clinical data is the OneFlorida+ Clinical Research Network, coordinated at UF and representing many health care systems.

“It’s critical to have such massive amounts of UF Health clinical data not only available but ready for AI. Only a supercomputer could handle such a big dataset of 277 billion words. We are excited to implement GatorTron™ and GatorTronGPT models to real-world health care at UF Health,” said Jiang Bian, Ph.D., a co-author and UF Health’s chief data scientist and chief research information officer.

A cross-section of 14 UF and UF Health faculty contributed to this study, including researchers from Research Computing, Integrated Data Repository Research Services within the Clinical and Translational Science Institute, and from departments and divisions within the College of Medicine, including neurosurgery, endocrinology, diabetes and metabolism, cardiovascular medicine, and health outcomes and biomedical informatics.

The study was partially funded by grants from the Patient-Centered Outcomes Research Institute, the National Cancer Institute and the National Institute on Aging.

Peng C, Yang X, Chen A, Smith KE, PourNejatian N, Costa AB, Martin C, Flores MG, Zhang Y, Magoc T, Lipori G, Mitchell DA, Ospina NS, Ahmed MM, Hogan WR, Shenkman EA, Guo Y, Bian J, Wu Y.
A study of generative large language model for medical research and healthcare.
NPJ Digit Med. 2023 Nov 16;6(1):210. doi: 10.1038/s41746-023-00958-w

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...