Study Reveals Bias in AI Tools when Diagnosing Women's Health Issue

Machine learning algorithms designed to diagnose a common infection that affects women showed a diagnostic bias among ethnic groups, University of Florida researchers found.

While artificial intelligence (AI) tools offer great potential for improving health care delivery, practitioners and scientists warn of their risk for perpetuating racial inequities. Published Friday in the Nature journal Digital Medicine, this is the first paper to evaluate fairness among these tools in connection to a women's health issue.

"Machine learning can be a great tool in medical diagnostics, but we found it can show bias toward different ethnic groups," said Ruogu Fang, an associate professor in the J. Crayton Pruitt Family Department of Biomedical Engineering and the study's author. "This is alarming for women's health as there already are existing disparities that vary by ethnicity."

The researchers evaluated the fairness of machine learning in diagnosing bacterial vaginosis, or BV, a common condition affecting women of reproductive age, which has clear diagnostic differences among ethnic groups.

Fang and co-corresponding author Ivana Parker, both faculty members in the Herbert Wertheim College of Engineering, pulled data from 400 women, comprising 100 from each of the ethnic groups represented - white, Black, Asian, and Hispanic.

In investigating the ability of four machine learning models to predict BV in women with no symptoms, researchers say the accuracy varied among ethnicities. Hispanic women had the most false-positive diagnoses, and Asian women received the most false-negative.

"The models performed highest for white women and lowest for Asian women," said the Parker, an assistant professor of bioengineering. "This tells us machine learning methods are not treating ethnic groups equally well."

Parker said that while they were interested in understanding how AI tools predict disease for specific ethnicities, their study also helps medical scientists understand the factors associated with bacteria in women of varying ethnic backgrounds, which can lead to improved treatments.

BV, one of the most common vaginal infections, can cause discomfort and pain and happens when natural bacteria levels are out of balance. While there are symptoms associate with BV, many people have no symptoms, making it difficult to diagnose.

It doesn't often cause complications, but in some cases, BV can increase the risk of sexually transmitted infections, miscarriage, and premature births.

The researchers said their findings demonstrate the need for improved methods for building the AI tools to mitigate health care bias.

Celeste C, Ming D, Broce J, Ojo DP, Drobina E, Louis-Jacques AF, Gilbert JE, Fang R, Parker IK.
Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning.
NPJ Digit Med. 2023 Nov 17;6(1):211. doi: 10.1038/s41746-023-00953-1

Most Popular Now

AI in Personalized Cancer Medicine: New …

The application of AI in precision oncology has so far been largely confined to the development of new drugs and had only limited impact on the personalisation of therapies. New...

AI can Predict Brain Cancer Patients…

Artificial Intelligence (AI) can predict whether adult patients with brain cancer will survive more than eight months after receiving radiotherapy treatment. The use of the AI to successfully predict patient outcomes...

Max Planck Institute for Informatics and…

The Max Planck Institute for Informatics and Google deepen their strategic research partnership. With additional financial support from the U.S. IT company, the "Saarbr├╝cken Research Center for Visual Computing, Interaction...

JMIR Medical Informatics Invites Submiss…

JMIR Publications has announced a new section titled, "AI Language Models in Health Care" in JMIR Medical Informatics. This leading peer-reviewed journal is indexed in PubMed and has a unique...

Paper Calls for Patient-First Regulation…

Ever wonder if the latest and greatest artificial intelligence (AI) tool you read about in the morning paper is going to save your life? A new study published in JAMA...

Could ChatGPT Help or Hurt Scientific Re…

Since its introduction to the public in November 2022, ChatGPT, an artificial intelligence system, has substantially grown in use, creating written stories, graphics, art and more with just a short...

Evaluating the Performance of AI-Based L…

A new study evaluates an artificial intelligence (AI)-based algorithm for autocontouring prior to radiotherapy in head and neck cancer. Manual contouring to pinpoint the area of treatment requires significant time...

Making AI a Partner in Neuroscientific D…

The past year has seen major advances in Large Language Models (LLMs) such as ChatGPT. The ability of these models to interpret and produce human text sources (and other sequence...

Chapman Scientists Code ChatGPT to Desig…

Generative artificial intelligence platforms, from ChatGPT to Midjourney, grabbed headlines in 2023. But GenAI can do more than create collaged images and help write emails - it can also design...

DMEA nova Award: Wanted - Visionary Solu…

9 - 11 April 2024, Berlin, Germany. The DMEA nova Award is being presented at DMEA 2024 for the first time. The award honours a digital health startup for an outstanding...

New Digital Therapy Reduces Anxiety and …

A therapist-guided digital cognitive behavioural therapy reduced distress in 89 per cent of participants living with long-term physical health conditions, a new King's College London study finds. Researchers at the Institute...

Europe's Digital Health Industry Me…

9 - 11 April 2024, Berlin, Germany. In just over two months, from 9 to 11 April 2024, DMEA, Europe's leading event for digitalisation of healthcare, will gather digital health experts...