Study Reveals Bias in AI Tools when Diagnosing Women's Health Issue

Machine learning algorithms designed to diagnose a common infection that affects women showed a diagnostic bias among ethnic groups, University of Florida researchers found.

While artificial intelligence (AI) tools offer great potential for improving health care delivery, practitioners and scientists warn of their risk for perpetuating racial inequities. Published Friday in the Nature journal Digital Medicine, this is the first paper to evaluate fairness among these tools in connection to a women's health issue.

"Machine learning can be a great tool in medical diagnostics, but we found it can show bias toward different ethnic groups," said Ruogu Fang, an associate professor in the J. Crayton Pruitt Family Department of Biomedical Engineering and the study's author. "This is alarming for women's health as there already are existing disparities that vary by ethnicity."

The researchers evaluated the fairness of machine learning in diagnosing bacterial vaginosis, or BV, a common condition affecting women of reproductive age, which has clear diagnostic differences among ethnic groups.

Fang and co-corresponding author Ivana Parker, both faculty members in the Herbert Wertheim College of Engineering, pulled data from 400 women, comprising 100 from each of the ethnic groups represented - white, Black, Asian, and Hispanic.

In investigating the ability of four machine learning models to predict BV in women with no symptoms, researchers say the accuracy varied among ethnicities. Hispanic women had the most false-positive diagnoses, and Asian women received the most false-negative.

"The models performed highest for white women and lowest for Asian women," said the Parker, an assistant professor of bioengineering. "This tells us machine learning methods are not treating ethnic groups equally well."

Parker said that while they were interested in understanding how AI tools predict disease for specific ethnicities, their study also helps medical scientists understand the factors associated with bacteria in women of varying ethnic backgrounds, which can lead to improved treatments.

BV, one of the most common vaginal infections, can cause discomfort and pain and happens when natural bacteria levels are out of balance. While there are symptoms associate with BV, many people have no symptoms, making it difficult to diagnose.

It doesn't often cause complications, but in some cases, BV can increase the risk of sexually transmitted infections, miscarriage, and premature births.

The researchers said their findings demonstrate the need for improved methods for building the AI tools to mitigate health care bias.

Celeste C, Ming D, Broce J, Ojo DP, Drobina E, Louis-Jacques AF, Gilbert JE, Fang R, Parker IK.
Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning.
NPJ Digit Med. 2023 Nov 17;6(1):211. doi: 10.1038/s41746-023-00953-1

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...