Study Reveals Bias in AI Tools when Diagnosing Women's Health Issue

Machine learning algorithms designed to diagnose a common infection that affects women showed a diagnostic bias among ethnic groups, University of Florida researchers found.

While artificial intelligence (AI) tools offer great potential for improving health care delivery, practitioners and scientists warn of their risk for perpetuating racial inequities. Published Friday in the Nature journal Digital Medicine, this is the first paper to evaluate fairness among these tools in connection to a women's health issue.

"Machine learning can be a great tool in medical diagnostics, but we found it can show bias toward different ethnic groups," said Ruogu Fang, an associate professor in the J. Crayton Pruitt Family Department of Biomedical Engineering and the study's author. "This is alarming for women's health as there already are existing disparities that vary by ethnicity."

The researchers evaluated the fairness of machine learning in diagnosing bacterial vaginosis, or BV, a common condition affecting women of reproductive age, which has clear diagnostic differences among ethnic groups.

Fang and co-corresponding author Ivana Parker, both faculty members in the Herbert Wertheim College of Engineering, pulled data from 400 women, comprising 100 from each of the ethnic groups represented - white, Black, Asian, and Hispanic.

In investigating the ability of four machine learning models to predict BV in women with no symptoms, researchers say the accuracy varied among ethnicities. Hispanic women had the most false-positive diagnoses, and Asian women received the most false-negative.

"The models performed highest for white women and lowest for Asian women," said the Parker, an assistant professor of bioengineering. "This tells us machine learning methods are not treating ethnic groups equally well."

Parker said that while they were interested in understanding how AI tools predict disease for specific ethnicities, their study also helps medical scientists understand the factors associated with bacteria in women of varying ethnic backgrounds, which can lead to improved treatments.

BV, one of the most common vaginal infections, can cause discomfort and pain and happens when natural bacteria levels are out of balance. While there are symptoms associate with BV, many people have no symptoms, making it difficult to diagnose.

It doesn't often cause complications, but in some cases, BV can increase the risk of sexually transmitted infections, miscarriage, and premature births.

The researchers said their findings demonstrate the need for improved methods for building the AI tools to mitigate health care bias.

Celeste C, Ming D, Broce J, Ojo DP, Drobina E, Louis-Jacques AF, Gilbert JE, Fang R, Parker IK.
Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning.
NPJ Digit Med. 2023 Nov 17;6(1):211. doi: 10.1038/s41746-023-00953-1

Most Popular Now

With Huge Patient Dataset, AI Accurately…

Scientists have designed a new artificial intelligence (AI) model that emulates randomized clinical trials at determining the treatment options most effective at preventing stroke in people with heart disease. The model...

Radboud University Medical Center and Ph…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Radboud University Medical Center have signed a hospital-wide, long-term strategic partnership that delivers the latest patient monitoring...

GPT-4, Google Gemini Fall Short in Breas…

Use of publicly available large language models (LLMs) resulted in changes in breast imaging reports classification that could have a negative effect on patient management, according to a new international...

ChatGPT fails at heart risk assessment

Despite ChatGPT's reported ability to pass medical exams, new research indicates it would be unwise to rely on it for some health assessments, such as whether a patient with chest...

Virtual Reality Shows Promise in Fightin…

A new study published in JMIR Mental Health sheds light on the promising role of virtual reality (VR) in treating major depressive disorder (MDD). Titled "Examining the Efficacy of Extended...

AXREM and Highland Marketing Partner to …

AXREM represents member companies that collectively provide UK hospitals with most of their diagnostic medical imaging technology, and radiotherapy equipment. The association has seen substantial growth in recent years, with membership...

Virtual Reality Environment for Teens ma…

Social media. The climate crisis. Political polarization. The tumult of a pandemic and online learning. Teens today are dealing with unprecedented stressors, and over the past decade their mental health...

AI Predicts Tumor-Killing Cells with Hig…

Using artificial intelligence, Ludwig Cancer Research scientists have developed a powerful predictive model for identifying the most potent cancer killing immune cells for use in cancer immunotherapies. Combined with additional algorithms...

Somerset NHS Foundation Trust Works with…

Somerset NHS Foundation Trust is working with Oleeo to help to support its recruitment processes and deliver a better experience for recruitment managers and candidates. The trust, which employs 14,000 people...

Researchers Use Foundation Models to Dis…

Researchers at Mass General Brigham have harnessed the technology behind foundation models, which power tools like ChatGPT, to discover new cancer imaging biomarkers that could transform how patterns are identified...

Why Standards are Key to Building Trust …

Opinion Article by Dean Mawson, Clinical Director and Founder, DPM Digital Health Consultancy. There's considerable interest in the potential uses of AI in healthcare at the moment; but there is also...

AI Tool to Improve Heart Failure Care

UVA Health researchers have developed a powerful new risk assessment tool for predicting outcomes in heart failure patients. The researchers have made the tool publicly available for free to clinicians. The...