Researchers Take New AI Approach to Analyze Tumors

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue. The method, presented in the journal Nature Communications, could contribute to more personalised treatment of cancer patients.

While recent advances in tumour imaging provide a great insight into the microscopic world of tumours, the challenge is to interpret the huge amount of data generated. With hundreds of molecules being measured simultaneously in tens or hundreds of thousands of cells, it has become difficult for researchers to know what molecules and cells to focus on.

AI methods can in principle help researchers analyse this avalanche of data and determine what to focus on. However, traditional AI such as deep neural networks often performs tasks without providing clear explanations that are understandable to humans. Details of how the process works are hidden or difficult to access in a so-called black box. The research team at Karolinska Institutet and SciLifeLab recognised the limitations of such methods and sought inspiration from other fields. They identified well-established analysis techniques in satellite imaging and ecology dating back to the 2000s and 1950s, respectively.

Similar to interpreting satellite images

New AI methods are continuously developed to interpret data from satellite images, for example to automatically identify cities, lakes, forests and deserts within large satellite images. In ecology, advanced techniques are used to reveal how species of plants, animals and micro-organisms cohabit as communities within a given geographical area.

"We realised that the interpretation of tumour images is similar to the interpretation of satellite images and that the relationships between cells in a tissue are similar to the relationships between species in ecology," explains Jean Hausser, senior researcher at the Department of Cell and Molecular Biology, Karolinska Institutet, who led the research. "By combining techniques used in satellite imaging and ecology and adapting them for the analysis of tumour tissue, we have now been able to turn complex data into new insights into how cancer works."

Tailor cancer treatments

The next step is to apply the new method in clinical trials. The researchers are collaborating with a major cancer hospital in Lyon, France, to seek answers to why only some patients respond to cancer immunotherapy. In another collaboration with the Mayo Clinic in the US, they are investigating why some breast cancer patients don’t need chemotherapy.

"With our new method, we can reveal important details in tumour tissue that can determine whether a cancer treatment works or not. The long-term goal is to be able to tailor cancer treatments to individual needs and avoid unnecessary side effects," says Jean Hausser.

The research was mainly funded by the Swedish Cancer Society, the Swedish Research Council and SciLifeLab. There are no reported conflicts of interest.

El Marrahi A, Lipreri F, Kang Z, Gsell L, Eroglu A, Alber D, Hausser J.
NIPMAP: niche-phenotype mapping of multiplex histology data by community ecology.
Nat Commun. 2023 Nov 7;14(1):7182. doi: 10.1038/s41467-023-42878-z

Most Popular Now

Collective Intelligence can Help Reduce …

An estimated 250,000 people die from preventable medical errors in the U.S. each year. Many of these errors originate during the diagnostic process. A powerful way to increase diagnostic accuracy...

New Study Suggests ECG-AI can Detect Car…

Artificial intelligence (AI) from patient electrocardiograms (ECGs) may be an innovative solution to enhance heart disease risk assessment. Atherosclerotic cardiovascular disease - arteries narrowed or blocked by the accumulation of...

Software Created from 'Building Blo…

New 'building-block' approaches to the creation of digital tools which include data and artificial intelligence (AI) could play a key role in improving the running of hospital wards and disease...

How could Technology Better Support Pati…

The NHS exists to serve patients. But more could be done to make their experience a key focus when it comes to technology adoption, senior NHS delegates told a recent...

"Showtime" for Digital Health …

13 - 16 November 2023, Düsseldorf, Germany. A hundred start-ups and more than 120 high-calibre professional speakers: These are just the "naked" facts which this year's MEDICA CONNECTED HEALTHCARE FORUM will...

Artificial Intelligence: Unexpected Resu…

Artificial intelligence (AI) is on the rise. Until now, AI applications generally have "black box" character: How AI arrives at its results remains hidden. Prof. Dr. Jürgen Bajorath, a cheminformatics...

Philips Program Developing AI-Powered Ul…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has received a second round of funding from the Bill & Melinda Gates Foundation to...

CGM Continues to Drive Digitization in H…

CompuGroup Medical SE & Co. KGaA (CGM), one of the world's leading e-health providers, successfully progressed the digitization in healthcare during the first three quarters in 2023. CGM supports physicians...

Wolverhampton's New 10-Year EPR Dea…

The Royal Wolverhampton NHS Trust (RWT) has just signed a 10-year contract with System C for an integrated electronic patient record (EPR) system, which will replace the trust's in-house built...

Printed Robots with Bones, Ligaments, an…

3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been...

Orchestrating the New World of AI in Hea…

Orion Health's UK and Ireland Customer Conference 2023 focused on the future potential and immediate, practical application of AI to healthcare - and gave delegates a first look at the...

Researchers Take New AI Approach to Anal…

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue...