Researchers Take New AI Approach to Analyze Tumors

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue. The method, presented in the journal Nature Communications, could contribute to more personalised treatment of cancer patients.

While recent advances in tumour imaging provide a great insight into the microscopic world of tumours, the challenge is to interpret the huge amount of data generated. With hundreds of molecules being measured simultaneously in tens or hundreds of thousands of cells, it has become difficult for researchers to know what molecules and cells to focus on.

AI methods can in principle help researchers analyse this avalanche of data and determine what to focus on. However, traditional AI such as deep neural networks often performs tasks without providing clear explanations that are understandable to humans. Details of how the process works are hidden or difficult to access in a so-called black box. The research team at Karolinska Institutet and SciLifeLab recognised the limitations of such methods and sought inspiration from other fields. They identified well-established analysis techniques in satellite imaging and ecology dating back to the 2000s and 1950s, respectively.

Similar to interpreting satellite images

New AI methods are continuously developed to interpret data from satellite images, for example to automatically identify cities, lakes, forests and deserts within large satellite images. In ecology, advanced techniques are used to reveal how species of plants, animals and micro-organisms cohabit as communities within a given geographical area.

"We realised that the interpretation of tumour images is similar to the interpretation of satellite images and that the relationships between cells in a tissue are similar to the relationships between species in ecology," explains Jean Hausser, senior researcher at the Department of Cell and Molecular Biology, Karolinska Institutet, who led the research. "By combining techniques used in satellite imaging and ecology and adapting them for the analysis of tumour tissue, we have now been able to turn complex data into new insights into how cancer works."

Tailor cancer treatments

The next step is to apply the new method in clinical trials. The researchers are collaborating with a major cancer hospital in Lyon, France, to seek answers to why only some patients respond to cancer immunotherapy. In another collaboration with the Mayo Clinic in the US, they are investigating why some breast cancer patients don’t need chemotherapy.

"With our new method, we can reveal important details in tumour tissue that can determine whether a cancer treatment works or not. The long-term goal is to be able to tailor cancer treatments to individual needs and avoid unnecessary side effects," says Jean Hausser.

The research was mainly funded by the Swedish Cancer Society, the Swedish Research Council and SciLifeLab. There are no reported conflicts of interest.

El Marrahi A, Lipreri F, Kang Z, Gsell L, Eroglu A, Alber D, Hausser J.
NIPMAP: niche-phenotype mapping of multiplex histology data by community ecology.
Nat Commun. 2023 Nov 7;14(1):7182. doi: 10.1038/s41467-023-42878-z

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...