Collective Intelligence can Help Reduce Medical Misdiagnoses

An estimated 250,000 people die from preventable medical errors in the U.S. each year. Many of these errors originate during the diagnostic process. A powerful way to increase diagnostic accuracy is to combine the diagnoses of multiple diagnosticians into a collective solution. However, there has been a dearth of methods for aggregating independent diagnoses in general medical diagnostics. Researchers from the Max Planck Institute for Human Development, the Institute for Cognitive Sciences and Technologies (ISTC), and the Norwegian University of Science and Technology have therefore introduced a fully automated solution using knowledge engineering methods.

The researchers tested their solution on 1,333 medical cases provided by The Human Diagnosis Project (Human Dx), each of which was independently diagnosed by 10 diagnosticians. The collective solution substantially increased diagnostic accuracy: Single diagnosticians achieved 46% accuracy, whereas pooling the decisions of 10 diagnosticians increased accuracy to 76%. Improvements occurred across medical specialties, chief complaints, and diagnosticians’ tenure levels. "Our results show the life-saving potential of tapping into the collective intelligence," says first author Ralf Kurvers. He is a senior research scientist at the Center for Adaptive Rationality of the Max Planck Institute for Human Development and his research focuses on social and collective decision making in humans and animals.

Collective intelligence has been proven to boost decision accuracy across many domains, such as geopolitical forecasting, investment, and diagnostics in radiology and dermatology (e.g., Kurvers et al., PNAS, 2016). However, collective intelligence has been mostly applied to relatively simple decision tasks. Applications in more open-ended tasks, such as emergency management or general medical diagnostics, are largely lacking due to the challenge of integrating unstandardized inputs from different people. To overcome this hurdle, the researchers used semantic knowledge graphs, natural language processing, and the SNOMED CT medical ontology, a comprehensive multilingual clinical terminology, for standardization.

"A key contribution of our work is that, while the human-provided diagnoses maintain their primacy, our aggregation and evaluation procedures are fully automated, avoiding possible biases in the generation of the final diagnosis and allowing the process to be more time- and cost-efficient," adds co-author Vito Trianni from the Institute for Cognitive Sciences and Technologies (ISTC) in Rome.

The researchers are currently collaborating - along with other partners - within the HACID project to bring their application one step closer to the market. The EU-funded project will explore a new approach that brings together human experts and AI-supported knowledge representation and reasoning in order to create new tools for decision making in various domains. The application of the HACID technology to medical diagnostics showcases one of the many opportunities to benefit from a digitally based health system and accessible data.

Kurvers RHJM, Nuzzolese AG, Russo A, Barabucci G, Herzog SM, Trianni V.
Automating hybrid collective intelligence in open-ended medical diagnostics.
Proceedings of the National Academy of Sciences of the United States of America, 120(34), 2023. doi: 10.1073/pnas.2221473120

Most Popular Now

Collective Intelligence can Help Reduce …

An estimated 250,000 people die from preventable medical errors in the U.S. each year. Many of these errors originate during the diagnostic process. A powerful way to increase diagnostic accuracy...

New Study Suggests ECG-AI can Detect Car…

Artificial intelligence (AI) from patient electrocardiograms (ECGs) may be an innovative solution to enhance heart disease risk assessment. Atherosclerotic cardiovascular disease - arteries narrowed or blocked by the accumulation of...

Software Created from 'Building Blo…

New 'building-block' approaches to the creation of digital tools which include data and artificial intelligence (AI) could play a key role in improving the running of hospital wards and disease...

How could Technology Better Support Pati…

The NHS exists to serve patients. But more could be done to make their experience a key focus when it comes to technology adoption, senior NHS delegates told a recent...

"Showtime" for Digital Health …

13 - 16 November 2023, Düsseldorf, Germany. A hundred start-ups and more than 120 high-calibre professional speakers: These are just the "naked" facts which this year's MEDICA CONNECTED HEALTHCARE FORUM will...

Artificial Intelligence: Unexpected Resu…

Artificial intelligence (AI) is on the rise. Until now, AI applications generally have "black box" character: How AI arrives at its results remains hidden. Prof. Dr. Jürgen Bajorath, a cheminformatics...

Philips Program Developing AI-Powered Ul…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has received a second round of funding from the Bill & Melinda Gates Foundation to...

CGM Continues to Drive Digitization in H…

CompuGroup Medical SE & Co. KGaA (CGM), one of the world's leading e-health providers, successfully progressed the digitization in healthcare during the first three quarters in 2023. CGM supports physicians...

Wolverhampton's New 10-Year EPR Dea…

The Royal Wolverhampton NHS Trust (RWT) has just signed a 10-year contract with System C for an integrated electronic patient record (EPR) system, which will replace the trust's in-house built...

Printed Robots with Bones, Ligaments, an…

3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been...

Orchestrating the New World of AI in Hea…

Orion Health's UK and Ireland Customer Conference 2023 focused on the future potential and immediate, practical application of AI to healthcare - and gave delegates a first look at the...

Researchers Take New AI Approach to Anal…

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue...