New Study Suggests ECG-AI can Detect Cardiovascular Disease Risks Sooner

Artificial intelligence (AI) from patient electrocardiograms (ECGs) may be an innovative solution to enhance heart disease risk assessment. Atherosclerotic cardiovascular disease - arteries narrowed or blocked by the accumulation of fatty plaques - is the leading global cause of death and is often driven by coronary artery disease. New study data published in eClinicalMedicine suggest that ECG-AI can flag some risks years sooner than current risk calculator equations by identifying signs of coronary artery disease, such as calcification and blockages, as well as evidence of a prior heart attack.

Many people may have coronary artery disease and not be aware of it. Unfortunately, the first sign of the disease could be sudden death or a major heart attack. Clinician tools, such as the pooled cohort equation, help determine a patient's 10-year risk for heart attacks and strokes. The tools guide shared decisions about the timing of therapies, but these tools have limitations.

ECG is a widely available test that measures the heart's electrical activity, and AI can be trained to identify and detect hidden patterns of disease from those electrical signals.

The ECG-AI to predict coronary artery disease was developed at Mayo Clinic and Anumana using the retrospective analysis of electronic health data of over 7 million patients across the U.S. Three separate ECG-AI models were trained, one each to detect coronary artery calcium, coronary artery blockage and segments of the heart's left ventricle not moving well - a sign of a prior heart attack.

"Used together, the three independent ECG-AI models predicted which patients had a high risk of hidden coronary artery disease, and therefore a high risk of having a heart attack. This is important information to guide our conversations with patients at the point of care, especially since the AI was useful in calculating these risks for as short as three years," says Francisco Lopez-Jimenez, M.D., a cardiologist at Mayo Clinic and senior author of the paper. "Used alone, the pooled cohort equation estimates the 10-year risk of developing cardiovascular disease. The addition of ECG-AI to see hidden risks sooner has the potential to save more lives. This model may also help identify people who do not know they have coronary disease who may benefit from lifesaving therapies."

The study was funded by Anumana, a spinoff company of nference and Mayo Clinic. Mayo Clinic has licensed this technology to Anumana. Mayo Clinic and authors of this study may benefit financially in the future if this technology is commercialized.

Samir Awasthi, Nikhil Sachdeva, Yash Gupta, Ausath G Anto, Shahir Asfahan, Ruben Abbou, Sairam Bade, Sanyam Sood, Lars Hegstrom, Nirupama Vellanki, Heather M Alger, Melwin Babu, Jose R Medina-Inojosa, Robert B McCully, Amir Lerman, Mark Stampehl, Rakesh Barve, Zachi I Attia, Paul A Friedman, Venky Soundararajan, Francisco Lopez-Jimenez.
Identification and risk stratification of coronary disease by artificial intelligence-enabled ECG.
eClinicalMedicine, 2023. doi: 10.1016/j.eclinm.2023.102259

Most Popular Now

European Artificial Intelligence Act Com…

The European Artificial Intelligence Act (AI Act), the world's first comprehensive regulation on artificial intelligence, enters into force. The AI Act is designed to ensure that AI developed and used...

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

Generative AI can Not yet Reliably Read …

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

AI can Help Rule out Abnormal Pathology …

A commercial artificial intelligence (AI) tool used off-label was effective at excluding pathology and had equal or lower rates of critical misses on chest X-ray than radiologists, according to a...

What Does the EU's Recent AI Act Me…

The European Union's law on artificial intelligence came into force on 1 August. The new AI Act essentially regulates what artificial intelligence can and cannot do in the EU. A...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...