New Study Suggests ECG-AI can Detect Cardiovascular Disease Risks Sooner

Artificial intelligence (AI) from patient electrocardiograms (ECGs) may be an innovative solution to enhance heart disease risk assessment. Atherosclerotic cardiovascular disease - arteries narrowed or blocked by the accumulation of fatty plaques - is the leading global cause of death and is often driven by coronary artery disease. New study data published in eClinicalMedicine suggest that ECG-AI can flag some risks years sooner than current risk calculator equations by identifying signs of coronary artery disease, such as calcification and blockages, as well as evidence of a prior heart attack.

Many people may have coronary artery disease and not be aware of it. Unfortunately, the first sign of the disease could be sudden death or a major heart attack. Clinician tools, such as the pooled cohort equation, help determine a patient's 10-year risk for heart attacks and strokes. The tools guide shared decisions about the timing of therapies, but these tools have limitations.

ECG is a widely available test that measures the heart's electrical activity, and AI can be trained to identify and detect hidden patterns of disease from those electrical signals.

The ECG-AI to predict coronary artery disease was developed at Mayo Clinic and Anumana using the retrospective analysis of electronic health data of over 7 million patients across the U.S. Three separate ECG-AI models were trained, one each to detect coronary artery calcium, coronary artery blockage and segments of the heart's left ventricle not moving well - a sign of a prior heart attack.

"Used together, the three independent ECG-AI models predicted which patients had a high risk of hidden coronary artery disease, and therefore a high risk of having a heart attack. This is important information to guide our conversations with patients at the point of care, especially since the AI was useful in calculating these risks for as short as three years," says Francisco Lopez-Jimenez, M.D., a cardiologist at Mayo Clinic and senior author of the paper. "Used alone, the pooled cohort equation estimates the 10-year risk of developing cardiovascular disease. The addition of ECG-AI to see hidden risks sooner has the potential to save more lives. This model may also help identify people who do not know they have coronary disease who may benefit from lifesaving therapies."

The study was funded by Anumana, a spinoff company of nference and Mayo Clinic. Mayo Clinic has licensed this technology to Anumana. Mayo Clinic and authors of this study may benefit financially in the future if this technology is commercialized.

Samir Awasthi, Nikhil Sachdeva, Yash Gupta, Ausath G Anto, Shahir Asfahan, Ruben Abbou, Sairam Bade, Sanyam Sood, Lars Hegstrom, Nirupama Vellanki, Heather M Alger, Melwin Babu, Jose R Medina-Inojosa, Robert B McCully, Amir Lerman, Mark Stampehl, Rakesh Barve, Zachi I Attia, Paul A Friedman, Venky Soundararajan, Francisco Lopez-Jimenez.
Identification and risk stratification of coronary disease by artificial intelligence-enabled ECG.
eClinicalMedicine, 2023. doi: 10.1016/j.eclinm.2023.102259

Most Popular Now

Collective Intelligence can Help Reduce …

An estimated 250,000 people die from preventable medical errors in the U.S. each year. Many of these errors originate during the diagnostic process. A powerful way to increase diagnostic accuracy...

New Study Suggests ECG-AI can Detect Car…

Artificial intelligence (AI) from patient electrocardiograms (ECGs) may be an innovative solution to enhance heart disease risk assessment. Atherosclerotic cardiovascular disease - arteries narrowed or blocked by the accumulation of...

Software Created from 'Building Blo…

New 'building-block' approaches to the creation of digital tools which include data and artificial intelligence (AI) could play a key role in improving the running of hospital wards and disease...

How could Technology Better Support Pati…

The NHS exists to serve patients. But more could be done to make their experience a key focus when it comes to technology adoption, senior NHS delegates told a recent...

"Showtime" for Digital Health …

13 - 16 November 2023, Düsseldorf, Germany. A hundred start-ups and more than 120 high-calibre professional speakers: These are just the "naked" facts which this year's MEDICA CONNECTED HEALTHCARE FORUM will...

Artificial Intelligence: Unexpected Resu…

Artificial intelligence (AI) is on the rise. Until now, AI applications generally have "black box" character: How AI arrives at its results remains hidden. Prof. Dr. Jürgen Bajorath, a cheminformatics...

Philips Program Developing AI-Powered Ul…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has received a second round of funding from the Bill & Melinda Gates Foundation to...

CGM Continues to Drive Digitization in H…

CompuGroup Medical SE & Co. KGaA (CGM), one of the world's leading e-health providers, successfully progressed the digitization in healthcare during the first three quarters in 2023. CGM supports physicians...

Wolverhampton's New 10-Year EPR Dea…

The Royal Wolverhampton NHS Trust (RWT) has just signed a 10-year contract with System C for an integrated electronic patient record (EPR) system, which will replace the trust's in-house built...

Printed Robots with Bones, Ligaments, an…

3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been...

Orchestrating the New World of AI in Hea…

Orion Health's UK and Ireland Customer Conference 2023 focused on the future potential and immediate, practical application of AI to healthcare - and gave delegates a first look at the...

Researchers Take New AI Approach to Anal…

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue...