New Study Suggests ECG-AI can Detect Cardiovascular Disease Risks Sooner

Artificial intelligence (AI) from patient electrocardiograms (ECGs) may be an innovative solution to enhance heart disease risk assessment. Atherosclerotic cardiovascular disease - arteries narrowed or blocked by the accumulation of fatty plaques - is the leading global cause of death and is often driven by coronary artery disease. New study data published in eClinicalMedicine suggest that ECG-AI can flag some risks years sooner than current risk calculator equations by identifying signs of coronary artery disease, such as calcification and blockages, as well as evidence of a prior heart attack.

Many people may have coronary artery disease and not be aware of it. Unfortunately, the first sign of the disease could be sudden death or a major heart attack. Clinician tools, such as the pooled cohort equation, help determine a patient's 10-year risk for heart attacks and strokes. The tools guide shared decisions about the timing of therapies, but these tools have limitations.

ECG is a widely available test that measures the heart's electrical activity, and AI can be trained to identify and detect hidden patterns of disease from those electrical signals.

The ECG-AI to predict coronary artery disease was developed at Mayo Clinic and Anumana using the retrospective analysis of electronic health data of over 7 million patients across the U.S. Three separate ECG-AI models were trained, one each to detect coronary artery calcium, coronary artery blockage and segments of the heart's left ventricle not moving well - a sign of a prior heart attack.

"Used together, the three independent ECG-AI models predicted which patients had a high risk of hidden coronary artery disease, and therefore a high risk of having a heart attack. This is important information to guide our conversations with patients at the point of care, especially since the AI was useful in calculating these risks for as short as three years," says Francisco Lopez-Jimenez, M.D., a cardiologist at Mayo Clinic and senior author of the paper. "Used alone, the pooled cohort equation estimates the 10-year risk of developing cardiovascular disease. The addition of ECG-AI to see hidden risks sooner has the potential to save more lives. This model may also help identify people who do not know they have coronary disease who may benefit from lifesaving therapies."

The study was funded by Anumana, a spinoff company of nference and Mayo Clinic. Mayo Clinic has licensed this technology to Anumana. Mayo Clinic and authors of this study may benefit financially in the future if this technology is commercialized.

Samir Awasthi, Nikhil Sachdeva, Yash Gupta, Ausath G Anto, Shahir Asfahan, Ruben Abbou, Sairam Bade, Sanyam Sood, Lars Hegstrom, Nirupama Vellanki, Heather M Alger, Melwin Babu, Jose R Medina-Inojosa, Robert B McCully, Amir Lerman, Mark Stampehl, Rakesh Barve, Zachi I Attia, Paul A Friedman, Venky Soundararajan, Francisco Lopez-Jimenez.
Identification and risk stratification of coronary disease by artificial intelligence-enabled ECG.
eClinicalMedicine, 2023. doi: 10.1016/j.eclinm.2023.102259

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...