Skin Cancer Diagnoses Using AI Are as Reliable as those Made by Medical Experts

Artificial intelligence (AI) is already widely used in medical diagnostics. An Austrian-Australian research team led by dermatologist Harald Kittler from MedUni Vienna investigated the extent to which diagnosis and therapy of pigmented skin lesions benefit from it in a realistic clinical scenario. In a study published by The Lancet Digital Health, the team compared the accuracy in diagnosis and therapy recommendation of two different algorithms in smartphone applications with that of doctors. The results show that the AI application generally performs well in diagnosis. However, doctors were clearly superior when it came to treatment decisions.

The research team tested the AI application under realistic clinical conditions in two skin cancer centres, the University Department of Dermatology at MedUni Vienna and the Sydney Melanoma Diagnostic Centre in Australia. The prospective study consisted of two scenarios, with AI being used in scenario A for changes suspicious of skin cancer and in scenario B for patients with many moles. The AI-assisted application was compared in both cases with both medical experts and less experienced physicians.

In scenario A, 172 suspicious pigmented lesions (of which 84 were malignant) were examined in 124 patients; in scenario B, the research team analysed 5,696 pigmented lesions (of which 18 were malignant) in 66 patients. Two different AI-based smartphone applications were used: a novel 7-class AI algorithm and an ISIC algorithm already used in retrospective preliminary studies. In scenario A, the 7-class AI algorithm showed equivalent diagnostic accuracy compared to the experts while it was significantly superior to the less experienced physicians. The ISIC algorithm, on the other hand, performed significantly worse compared to experts, but better than the inexperienced users.

A critical view of AI decisions

In terms of treatment decisions, the 7-class algorithm was significantly inferior to the experts but superior to the inexperienced users. The results suggest that an AI-assisted smartphone application for skin cancer diagnosis makes similarly good diagnostic decisions as experts in a real clinical scenario. When it came to treatment decisions, however, the experts were superior to the AI. Kittler: "The AI application tends to remove more benign lesions in the treatment recommendation than experts would. If you take this into account, the AI application can certainly be used. It should also be borne in mind that if it is used uncritically, too many false-positive findings would have to be clarified."

Menzies SW, Sinz C, Menzies M, Lo SN, Yolland W, Lingohr J, Razmara M, Tschandl P, Guitera P, Scolyer RA, Boltz F, Borik-Heil L, Herbert Chan H, Chromy D, Coker DJ, Collgros H, Eghtedari M, Corral Forteza M, Forward E, Gallo B, Geisler S, Gibson M, Hampel A, Ho G, Junez L, Kienzl P, Martin A, Moloney FJ, Regio Pereira A, Ressler JM, Richter S, Silic K, Silly T, Skoll M, Tittes J, Weber P, Weninger W, Weiss D, Woo-Sampson P, Zilberg C, Kittler H.
Comparison of humans versus mobile phone-powered artificial intelligence for the diagnosis and management of pigmented skin cancer in secondary care: a multicentre, prospective, diagnostic, clinical trial.
Lancet Digit Health. 2023 Oct;5(10):e679-e691. doi: 10.1016/S2589-7500(23)00130-9

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...