Computer Model Predicts Who Needs Lung Cancer Screening

A machine learning model equipped with only data on people's age, smoking duration and the number of cigarettes smoked per day can predict lung cancer risk and identify who needs lung cancer screening, according to a new study publishing October 3rd in the open access journal PLOS Medicine by Thomas Callender of University College London, UK, and colleagues.

Lung cancer is the most common cause of cancer death worldwide, with poor survival in the absence of early detection. Screening for lung cancer among those at highest risk could reduce lung cancer deaths by nearly a quarter, but the ideal way to determine the high-risk population has been unclear. The current standard-of-care model of lung cancer risk requires 17 variables, few of which are routinely available in electronic health records.

In the new study, researchers used data on 216,714 ever-smokers from the UK Biobank cohort and 26,616 ever-smokers participating in the US National Lung Screening trial to develop new models of lung cancer risk.

A machine learning model used three predictors - age, smoking duration and pack-years - to calculate people's odds of both developing lung cancer and dying of lung cancer over the next five years. The researchers tested the new model on a third set of data, from the US Prostate, Lung, Colorectal and Ovarian Screening Trial. The model predicted lung cancer incidence with an 83.9% sensitivity and lung cancer deaths with an 85.5% sensitivity. All versions of the model had a higher sensitivity than the currently used risk prediction formulas at an equivalent specificity.

Callender adds, "We know that screening for those who have a high chance of developing lung cancer can save lives. With machine learning, we’ve been able to substantially simplify how we work out who is at high risk, presenting an approach that could be an exciting step in the direction of widespread implementation of personalised screening to detect many diseases early."

Callender T, Imrie F, Cebere B, Pashayan N, Navani N, van der Schaar M, Janes SM.
Assessing eligibility for lung cancer screening using parsimonious ensemble machine learning models: A development and validation study.
PLoS Med. 2023 Oct 3;20(10):e1004287. doi: 10.1371/journal.pmed.1004287

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...