Computer Model Predicts Who Needs Lung Cancer Screening

A machine learning model equipped with only data on people's age, smoking duration and the number of cigarettes smoked per day can predict lung cancer risk and identify who needs lung cancer screening, according to a new study publishing October 3rd in the open access journal PLOS Medicine by Thomas Callender of University College London, UK, and colleagues.

Lung cancer is the most common cause of cancer death worldwide, with poor survival in the absence of early detection. Screening for lung cancer among those at highest risk could reduce lung cancer deaths by nearly a quarter, but the ideal way to determine the high-risk population has been unclear. The current standard-of-care model of lung cancer risk requires 17 variables, few of which are routinely available in electronic health records.

In the new study, researchers used data on 216,714 ever-smokers from the UK Biobank cohort and 26,616 ever-smokers participating in the US National Lung Screening trial to develop new models of lung cancer risk.

A machine learning model used three predictors - age, smoking duration and pack-years - to calculate people's odds of both developing lung cancer and dying of lung cancer over the next five years. The researchers tested the new model on a third set of data, from the US Prostate, Lung, Colorectal and Ovarian Screening Trial. The model predicted lung cancer incidence with an 83.9% sensitivity and lung cancer deaths with an 85.5% sensitivity. All versions of the model had a higher sensitivity than the currently used risk prediction formulas at an equivalent specificity.

Callender adds, "We know that screening for those who have a high chance of developing lung cancer can save lives. With machine learning, we’ve been able to substantially simplify how we work out who is at high risk, presenting an approach that could be an exciting step in the direction of widespread implementation of personalised screening to detect many diseases early."

Callender T, Imrie F, Cebere B, Pashayan N, Navani N, van der Schaar M, Janes SM.
Assessing eligibility for lung cancer screening using parsimonious ensemble machine learning models: A development and validation study.
PLoS Med. 2023 Oct 3;20(10):e1004287. doi: 10.1371/journal.pmed.1004287

Most Popular Now

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...