AI Predictions for Colorectal Cancer: One Step Closer to Efficient Precision Oncology

Colorectal cancer (CRC) ranks second in leading causes of cancer-related deaths globally, according to the WHO. For the first time, researchers from Helmholtz Munich and the University of Technology Dresden (TU Dresden) show that artificial intelligence (AI)-based predictions can deliver comparable results to clinical tests on biopsies of patients with CRC. AI predictions can speed up the analysis of tissue samples, resulting in faster treatment decisions. This novel model for biomarker detection represents a significant stride towards the realization of precision therapy approaches in the field of oncology. The method is now published in Cancer Cell.

A team of scientists around Dr. Tingying Peng from Helmholtz Munich and Prof. Jakob N. Kather from TU Dresden show that AI can predict specific biomarkers in stained tissue samples of patients with CRC. They used so-called transformer networks, a recent deep learning (DL) approach, to identify patterns and support diagnostic decisions in cancer management. The new method significantly improves previous approaches for biomarker detection.

Large-Scale Evaluation Proves Better Generalization and Data-Efficiency

The team of researchers developed software that uses the new technology of transformer neural networks throughout the analysis process. They show that their approach substantially improves the performance, generalizability, data efficiency, and interpretability by evaluating it on a large multicentric cohort of over 13,000 patients from 16 cohorts from seven countries (Australia, China, Germany, Israel, Netherlands, UK, USA), part of which was contributed by researchers at the German Cancer Research Center (DKFZ) Heidelberg and the network of the National Centers for Tumor Diseases (NCT). The algorithm trained on the large multicentric cohort achieves a very high sensitivity on resection tissue samples obtained during surgery. Strikingly, even though their model has only been trained on tissue samples from resections, the results can reach also a high performance on biopsy tissue obtained during colonoscopy. Sophia J. Wagner, the first author of the study, emphasizes that “the generalization to biopsy tissue increases the algorithm’s benefit for the patient when ultimately implemented in clinical routine”.

AI-Based Pre-screening for Biopsies Accelerate Diagnosis

Because of its high sensitivity on biopsy tissue, the algorithm could serve as a pre-screening tool followed by affirmative testing for cases that received a positive result during AI testing. Applying AI-based biomarker prediction could reduce the testing burden and therefore speed up the step between taking the biopsy and the molecular determination of the genetic risk status, thus enabling an earlier patient treatment with immunotherapy if indicated.

Sophia J Wagner, Daniel Reisenbüchler, Nicholas P West, Jan Moritz Niehues, Jiefu Zhu, Sebastian Foersch, Gregory Patrick Veldhuizen, Philip Quirke, Heike I Grabsch, Piet A van den Brandt, Gordon GA Hutchins, Susan D Richman, Tanwei Yuan, Rupert Langer, Josien CA Jenniskens, Kelly Offermans, Wolfram Mueller, Richard Gray, Stephen B Gruber, Joel K Greenson, Gad Rennert, Joseph D Bonner, Daniel Schmolze, Jitendra Jonnagaddala, Nicholas J Hawkins, Robyn L Ward, Dion Morton, Matthew Seymour, Laura Magill, Marta Nowak, Jennifer Hay, Viktor H Koelzer, David N Church, David Church, Enric Domingo, Joanne Edwards, Bengt Glimelius, Ismail Gogenur, Andrea Harkin, Jen Hay, Timothy Iveson, Emma Jaeger, Caroline Kelly, Rachel Kerr, Noori Maka, Hannah Morgan, Karin Oien, Clare Orange, Claire Palles, Campbell Roxburgh, Owen Sansom, Mark Saunders, Ian Tomlinson, Christian Matek, Carol Geppert, Chaolong Peng, Cheng Zhi, Xiaoming Ouyang, Jacqueline A James, Maurice B Loughrey, Manuel Salto-Tellez, Hermann Brenner, Michael Hoffmeister, Daniel Truhn, Julia A Schnabel, Melanie Boxberg, Tingying Peng, Jakob Nikolas Kather.
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.
Cancer Cell, 2023. doi: 10.1016/j.ccell.2023.08.002

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...