AI Predictions for Colorectal Cancer: One Step Closer to Efficient Precision Oncology

Colorectal cancer (CRC) ranks second in leading causes of cancer-related deaths globally, according to the WHO. For the first time, researchers from Helmholtz Munich and the University of Technology Dresden (TU Dresden) show that artificial intelligence (AI)-based predictions can deliver comparable results to clinical tests on biopsies of patients with CRC. AI predictions can speed up the analysis of tissue samples, resulting in faster treatment decisions. This novel model for biomarker detection represents a significant stride towards the realization of precision therapy approaches in the field of oncology. The method is now published in Cancer Cell.

A team of scientists around Dr. Tingying Peng from Helmholtz Munich and Prof. Jakob N. Kather from TU Dresden show that AI can predict specific biomarkers in stained tissue samples of patients with CRC. They used so-called transformer networks, a recent deep learning (DL) approach, to identify patterns and support diagnostic decisions in cancer management. The new method significantly improves previous approaches for biomarker detection.

Large-Scale Evaluation Proves Better Generalization and Data-Efficiency

The team of researchers developed software that uses the new technology of transformer neural networks throughout the analysis process. They show that their approach substantially improves the performance, generalizability, data efficiency, and interpretability by evaluating it on a large multicentric cohort of over 13,000 patients from 16 cohorts from seven countries (Australia, China, Germany, Israel, Netherlands, UK, USA), part of which was contributed by researchers at the German Cancer Research Center (DKFZ) Heidelberg and the network of the National Centers for Tumor Diseases (NCT). The algorithm trained on the large multicentric cohort achieves a very high sensitivity on resection tissue samples obtained during surgery. Strikingly, even though their model has only been trained on tissue samples from resections, the results can reach also a high performance on biopsy tissue obtained during colonoscopy. Sophia J. Wagner, the first author of the study, emphasizes that “the generalization to biopsy tissue increases the algorithm’s benefit for the patient when ultimately implemented in clinical routine”.

AI-Based Pre-screening for Biopsies Accelerate Diagnosis

Because of its high sensitivity on biopsy tissue, the algorithm could serve as a pre-screening tool followed by affirmative testing for cases that received a positive result during AI testing. Applying AI-based biomarker prediction could reduce the testing burden and therefore speed up the step between taking the biopsy and the molecular determination of the genetic risk status, thus enabling an earlier patient treatment with immunotherapy if indicated.

Sophia J Wagner, Daniel Reisenbüchler, Nicholas P West, Jan Moritz Niehues, Jiefu Zhu, Sebastian Foersch, Gregory Patrick Veldhuizen, Philip Quirke, Heike I Grabsch, Piet A van den Brandt, Gordon GA Hutchins, Susan D Richman, Tanwei Yuan, Rupert Langer, Josien CA Jenniskens, Kelly Offermans, Wolfram Mueller, Richard Gray, Stephen B Gruber, Joel K Greenson, Gad Rennert, Joseph D Bonner, Daniel Schmolze, Jitendra Jonnagaddala, Nicholas J Hawkins, Robyn L Ward, Dion Morton, Matthew Seymour, Laura Magill, Marta Nowak, Jennifer Hay, Viktor H Koelzer, David N Church, David Church, Enric Domingo, Joanne Edwards, Bengt Glimelius, Ismail Gogenur, Andrea Harkin, Jen Hay, Timothy Iveson, Emma Jaeger, Caroline Kelly, Rachel Kerr, Noori Maka, Hannah Morgan, Karin Oien, Clare Orange, Claire Palles, Campbell Roxburgh, Owen Sansom, Mark Saunders, Ian Tomlinson, Christian Matek, Carol Geppert, Chaolong Peng, Cheng Zhi, Xiaoming Ouyang, Jacqueline A James, Maurice B Loughrey, Manuel Salto-Tellez, Hermann Brenner, Michael Hoffmeister, Daniel Truhn, Julia A Schnabel, Melanie Boxberg, Tingying Peng, Jakob Nikolas Kather.
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.
Cancer Cell, 2023. doi: 10.1016/j.ccell.2023.08.002

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...