ChatGPT Shows Limited Ability to Recommend Guidelines-Based Cancer Treatments

For many patients, the internet serves as a powerful tool for self-education on medical topics. With ChatGPT now at patients’ fingertips, researchers from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, assessed how consistently the artificial intelligence chatbot provides recommendations for cancer treatment that align with National Comprehensive Cancer Network (NCCN) guidelines. Their findings, published in JAMA Oncology, show that in approximately one-third of cases, ChatGPT 3.5 provided an inappropriate (“non-concordant”) recommendation, highlighting the need for awareness of the technology’s limitations.

"Patients should feel empowered to educate themselves about their medical conditions, but they should always discuss with a clinician, and resources on the Internet should not be consulted in isolation," said corresponding author Danielle Bitterman, MD, of the Department of Radiation Oncology and the Artificial Intelligence in Medicine (AIM) Program of Mass General Brigham. "ChatGPT responses can sound a lot like a human and can be quite convincing. But, when it comes to clinical decision-making, there are so many subtleties for every patient’s unique situation. A right answer can be very nuanced, and not necessarily something ChatGPT or another large language model can provide."

The emergence of artificial intelligence tools in health has been groundbreaking and has the potential to positively reshape the continuum of care. Mass General Brigham, as one of the nation’s top integrated academic health systems and largest innovation enterprises, is leading the way in conducting rigorous research on new and emerging technologies to inform the responsible incorporation of AI into care delivery, workforce support, and administrative processes.

Although medical decision-making can be influenced by many factors, Bitterman and colleagues chose to evaluate the extent to which ChatGPT's recommendations aligned with the NCCN guidelines, which are used by physicians at institutions across the country. They focused on the three most common cancers (breast, prostate and lung cancer) and prompted ChatGPT to provide a treatment approach for each cancer based on the severity of the disease. In total, the researchers included 26 unique diagnosis descriptions and used four, slightly different prompts to ask ChatGPT to provide a treatment approach, generating a total of 104 prompts.

Nearly all responses (98 percent) included at least one treatment approach that agreed with NCCN guidelines. However, the researchers found that 34 percent of these responses also included one or more non-concordant recommendations, which were sometimes difficult to detect amidst otherwise sound guidance. A non-concordant treatment recommendation was defined as one that was only partially correct; for example, for a locally advanced breast cancer, a recommendation of surgery alone, without mention of another therapy modality. Notably, complete agreement in scoring only occurred in 62 percent of cases, underscoring both the complexity of the NCCN guidelines themselves and the extent to which ChatGPT's output could be vague or difficult to interpret.

In 12.5 percent of cases, ChatGPT produced “hallucinations,” or a treatment recommendation entirely absent from NCCN guidelines. These included recommendations of novel therapies, or curative therapies for non-curative cancers. The authors emphasized that this form of misinformation can incorrectly set patients’ expectations about treatment and potentially impact the clinician-patient relationship.

Going forward, the researchers are exploring how well both patients and clinicians can distinguish between medical advice written by a clinician versus a large language model (LLM) like ChatGPT. They are also prompting ChatGPT with more detailed clinical cases to further evaluate its clinical knowledge.

The authors used GPT-3.5-turbo-0301, one of the largest models available at the time they conducted the study and the model class that is currently used in the open-access version of ChatGPT (a newer version, GPT-4, is only available with the paid subscription). They also used the 2021 NCCN guidelines, because GPT-3.5-turbo-0301 was developed using data up to September 2021. While results may vary if other LLMs and/or clinical guidelines are used, the researchers emphasize that many LLMs are similar in the way they are built and the limitations they possess.

"It is an open research question as to the extent LLMs provide consistent logical responses as oftentimes 'hallucinations' are observed," said first author Shan Chen, MS, of the AIM Program. "Users are likely to seek answers from the LLMs to educate themselves on health-related topics - similarly to how Google searches have been used. At the same time, we need to raise awareness that LLMs are not the equivalent of trained medical professionals."

Chen S, Kann BH, Foote MB, Aerts HJWL, Savova GK, Mak RH, Bitterman DS.
Use of Artificial Intelligence Chatbots for Cancer Treatment Information.
JAMA Oncol. 2023 Aug 24:e232954. doi: 10.1001/jamaoncol.2023.2954

Most Popular Now

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...

New Medical AI Tool Identifies more Case…

Investigators at Mass General Brigham have developed an AI-based tool to sift through electronic health records to help clinicians identify cases of long COVID, an often mysterious condition that can...

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

MEDICA 2024 and COMPAMED 2024: Medical T…

11 - 14 November 2024, Düsseldorf, Germany. "Meet Health. Future. People." is MEDICA's campaign motto for the future in the new trade fair year 2025. The aptness of the motto...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...