AI Model Developed by Brigham Researchers could Help Screen for Heart Defect

The AI model was more efficient at detecting signatures of atrial septal defect (ASD) in electrocardiograms (ECG) than traditional methods.

Investigators from Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, and Keio University in Japan have developed a deep learning artificial intelligence model to screen electrocardiogram (ECG) for signs of atrial septal defects (ASD). This condition can cause heart failure and is underreported due to a lack of symptoms before irreversible complications arise. Their results are published in eClinicalMedicine.

"If we can deploy our model on a population-level ECG screening, we would be able to pick up many more of these patients before they have irreversible damage," said Shinichi Goto, MD, PhD, corresponding author on the paper and instructor in the Division of Cardiovascular Medicine at Brigham and Women's Hospital.

ASD is a common adult congenital heart disease. It is caused by a hole in the heart’s septum that lets blood flow between the left and right atriums. It’s diagnosed in about 0.1% to 0.2% of the population but is likely underreported, Goto said. The symptoms of ASD are typically very mild or, in many cases, nonexistent until later in life. Symptoms include an inability to do strenuous exercise, affect the rate or rhythm of the heartbeat, heart palpitations, and an increased risk of pneumonia.

Even if ASD isn’t causing symptoms, it can stress the heart and increase the risk of atrial fibrillation, stroke, heart failure, and pulmonary hypertension. At that point, the complications of ASD are irreversible, even if the defect is fixed later. If found early, ASD can be corrected with minimally invasive surgery to improve life expectancy and reduce complications.

There are several ways to detect ASD. First, the largest defects can be found by listening to the heart with a stethoscope. But only about 30% of patients can be discovered this way. Another is by echocardiogram, a time and labor-intensive test that is not a good option for screening. Another test, electrocardiography, or ECG, takes only about a minute, making it possible to use as a screening tool. However, when humans analyze an ECG readout for known abnormalities associated with ASD, there is limited sensitivity for picking up ASD.

To see if an AI model could better detect ASD from ECG readouts, the study team fed a deep learning model ECG data from 80,947 patients over 18 who underwent both ECG and echocardiogram to detect ASD. A total of 857 patients were diagnosed with ASD. The data was collected from three hospitals: two large teaching institutions - one, BWH, in the US and the other, Keio University in Japan, and Dokkyo Medical University, Saitama Medical Center in Japan, a community hospital. The model was then tested using scans from Dokkyo, which has a more general population and isn't specifically screening patients for ASD. The model was more sensitive than using known abnormalities found on ECGs to screen for ASD. The model correctly detected ASD 93.7% of the time, while using known abnormalities found ASD 80.6% of the time.

2It picked up much more than what an expert does using known abnormalities to identify cases of ASD," Goto said. One limitation of the study is that the model was trained used samples from academic institutions, which deal more with rare diseases like ASD. All the patients used to train the model were being screened for ASD and received an echocardiogram, so it is not clear how well the model would work on a general population, which is why they tested it in Dokkyo. "The model's performance was retained even in the community hospital's general population, which suggests that the model generalizes well."

The authors also note that even the use of echocardiogram to detect ASD will not find every defect. Some could slip through both the regular screening and the AI model, though these smaller defects are less likely to require surgical closure. "The problem of machine learning is that it's a black box - we don't really know what features it picked up," Goto said. That means we can’t learn what features to look for in ECGs from the model, either.

Results suggest that the technology could be used in population-level screening to detect ASD before it leads to irreversible heart damage. ECG is relatively low cost and currently performed in many contexts. "Perhaps this screening could be integrated into an annual PCP appointment or used to screen ECGs taken for other reasons," Goto said.

Kotaro Miura, Ryuichiro Yagi, Hiroshi Miyama, Mai Kimura, Hideaki Kanazawa, Masahiro Hashimoto, Sayuki Kobayashi, Shiro Nakahara, Tetsuya Ishikawa, Isao Taguchi, Motoaki Sano, Kazuki Sato, Keiichi Fukuda, Rahul C Deo, Calum A MacRae, Yuji Itabashi, Yoshinori Katsumata, Shinichi Gotoa.
Deep Learning-Based Model Detects Atrial Septal Defects from Electrocardiography: A Cross-Sectional Multicenter Hospital-Based Study.
eClinicalMedicine, 2023. doi: 10.1016/j.eclinm.2023.102141

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

Two Artificial Intelligences Talk to Eac…

Performing a new task based solely on verbal or written instructions, and then describing it to others so that they can reproduce it, is a cornerstone of human communication that...

Powerful New AI can Predict People'…

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19. The predictive system uses a small set of data from demographics...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

AI-Based App can Help Physicians Find Sk…

A mobile app that uses artificial intelligence, AI, to analyse images of suspected skin lesions can diagnose melanoma with very high precision. This is shown in a study led from...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Researchers Develop Deep Learning Model …

Researchers have developed a new, interpretable artificial intelligence (AI) model to predict 5-year breast cancer risk from mammograms, according to a new study published today in Radiology, a journal of...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...