Study Proposes Use of AI to Diagnose Autism Spectrum Disorder

Diagnosing autism spectrum disorder (ASD) is still a daunting challenge because of the degree of complexity involved, requiring highly specialized professionals. Autism is a multifactorial neurodevelopment disorder with widely varying symptoms. In the United States, about 1 in 36 children have been diagnosed with ASD, according to the Centers for Disease Control and Prevention (CDC), and yet there are no biochemical markers to identify it with precision. A quantitative diagnostic method is proposed by Brazilian researchers in an article published in the journal Scientific Reports.

The study was based on brain imaging data for 500 people, about half of whom (242) had been diagnosed with ASD. Machine learning techniques were applied to the data. "We began developing our methodology by collecting functional magnetic resonance imaging [fMRI] and electroencephalogram [EEG] data," said Francisco Rodrigues, last author of the article. He is a professor at the University of São Paulo's Institute of Mathematics and Computer Science (ICMC-USP) in São Carlos, Brazil, and his contribution to the research was supported by FAPESP.

"We compared maps of people with and without ASD and found that diagnosis was possible using this methodology," Rodrigues said.

The researchers fed a machine learning algorithm with these maps. Based on the learned examples, the system was able to determine which brain alterations were associated with ASD with above 95% accuracy.

Much recent research proposes methods for diagnosing ASD based on machine learning but uses a single statistical parameter, ignoring brain network organization, which is the innovation featured by this study, the article notes. Brain maps or cortical networks show how brain regions are connected. Research on these networks began about 20 years ago and has offered a new vision of neuroscience. "Just as a road with interruptions alters the traffic in a region, a brain with alterations leads to changes in behavior," Rodrigues said.

The analysis of fMRI data highlighted changes in certain brain regions associated with cognitive, emotional, learning and memory processes. The cortical networks of ASD patients displayed more segregation, less distribution of information and less connectivity compared to controls.

"Until a few years ago, little was known about the alterations that lead to the symptoms of ASD. Now, however, brain alterations in ASD patients are known to be associated with certain behaviors, although anatomical research shows that the alterations are hard to see, making diagnosis of mild ASD much harder. Our study is an important step in the development of novel methodologies that can help us obtain a deeper understanding of this neurodivergence," Rodrigues said.

The methodology is under development and will take years to implement. Nevertheless, it will contribute to the understanding of cerebral differences and will be useful in future to assist specialists, especially in cases involving diagnostic uncertainty.

A wide range of applications

For Rodrigues, the study is a small contribution to a deeper understanding of how ASD relates to brain alterations. Much more research is needed for this automatic diagnostic method to be put into practice. Brain mapping can be useful to diagnose other conditions apart from ASD. Previous work shows that brain maps can also be used to detect schizophrenia with considerable accuracy.

"We began developing novel methods to identify mental disorders a decade ago. We found that the diagnosis of schizophrenia can be much improved using brain networks and artificial intelligence. We also recently studied use of the methodology to investigate Alzheimer's disease and found accurate automatic diagnosis to be possible," Rodrigues said, referring to a study reported in 2022 in the Journal of Neural Engineering.

Many challenges have to be surmounted, such as small databases and the difficulty of collecting data, but as a general methodology it can help scientists understand several conditions, and one of the group’s goals is investigating the relationships among mental disorders.

"How similar in terms of brain alterations are schizophrenia and Alzheimer's? If we can find correlations between mental disorders, we may be able to develop novel medications and similar treatments for different conditions, or even adapt treatment for one condition to use in another. We're a long way from this, but the path ahead is promising," Rodrigues said.

The researchers expect a better understanding of how brain alterations influence behavior to lead to more humane and efficient treatment as well as more effective public policies. The complexity of the subject is evident from the interdisciplinary nature of the research involved. The group comprised physicists, statisticians, physicians and neuroscientists from centers in Brazil, France and Germany. They analyzed medical data compiled by neurologists and brain imaging studies by neuroscientists, as well as algorithms developed by physicists and statisticians.

The study was part of the PhD research of Caroline Alves, first author of the article. Her background is in physics, physical and biomolecular sciences, and computer science. FAPESP also supported two other authors of the article via PhD scholarships: Aruane Pineda (grant no. 19/22277-0) and Kirstin Roster (grant no. 19/26595-7), both of whom were supervised by Rodrigues.

Alves CL, Toutain TGLO, de Carvalho Aguiar P, Pineda AM, Roster K, Thielemann C, Porto JAM, Rodrigues FA.
Diagnosis of autism spectrum disorder based on functional brain networks and machine learning.
Sci Rep. 2023 May 18;13(1):8072. doi: 10.1038/s41598-023-34650-6

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...