New Neuroimaging Approach could Improve Diagnosis of Schizophrenia

New research led by scientists working with Georgia State University's TReNDS Center has identified age-related changes in brain patterns associated with the risk for developing schizophrenia.

The discovery could help clinicians identify the risk for developing mental illness earlier and improve treatment options. The study is published in the Proceedings of the National Academy of Sciences (PNAS).

The research is part of a collaboration by experts from the University of Bari Aldo Moro, the Lieber Institute of Brain Development and the Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) based at Georgia State University.

The study used new analytic approaches developed at the TReNDS center. Researchers used a hybrid, data-driven method called Neuromark to extract reliable brain networks from the neuroimaging data which were then further analyzed in the study.

Researchers started with functional MRI scans (fMRI) to detect age-related changes in brain connectivity and their association with schizophrenia risk. The research identified high-risk individuals for developing psychosis during late adolescence and early adulthood.

Using this novel approach to existing functional neuroimaging datasets led to a breakthrough in understanding both genetic and clinical risks for schizophrenia in the context of how brain regions communicate with each other.

"This study combined over 9,000 data sets using an approach which computes functional brain networks adaptively while also allowing us to summarize and compare across individuals," said Distinguished University Professor Vince Calhoun, director of the TReNDS center. "This led us to a really interesting result showing that genetic risk for schizophrenia is detectable in brain network interactions even for those who do not have schizophrenia, and this change reduces with age. These results also motivate us to do further investigation into the potential of functional brain network interactions to be used as an early risk detector."

The team analyzed data from 9,236 individuals in different age stages acquired by the University of Bari Aldo Moro, the Lieber Institute of Brain Development, the U.K. Biobank, the Adolescent Brain Cognitive Development Study and the Philadelphia Neurodevelopmental Cohort. Using fMRI scans, genetic and clinical measures, they found that alterations in prefrontal-sensorimotor and cerebellar-occipitoparietal brain connections are linked to genetic risk for schizophrenia. These alterations were observed in patients with schizophrenia, their neurotypical siblings and those displaying under-threshold psychotic symptoms.

Roberta Passiatore, a visiting fellow from the University of Bari Aldo Moro in Bari, Italy, and first author of the study, said researchers found alterations in the age-related network connectivity specifically during late adolescence and early adulthood. Schizophrenia symptoms typically develop early in life, often beginning in the mid-20s, with early onset occurring before 18.

The researchers found that younger individuals with increased risk have similar network connectivity as the brains seen in older patients. These findings could help identify a patient’s risk for developing disease later in life.

"Visiting TReNDS under the expert guidance of Professor Calhoun has been an exceptional experience. It provided me with a unique opportunity to develop an innovative approach that led to the discovery of a distinct brain signature for assessing the risk of schizophrenia by pooling multiple functional acquisitions," Passiatore said. "These findings trace a risk-related brain trajectory across multiple age stages with the potential to enhance our understanding of the disorder and to improve early diagnosis and intervention efforts, with a significant impact on the lives of at-risk individuals."

The study highlights the importance of an age-oriented approach and leveraging multiple scans to identify risk in brain networks and potential genetic associations.

The findings could improve early detection and intervention strategies and offer potential biomarkers for investigating the role of specific genes and molecular pathways in developing schizophrenia.

The Translational Research in Neuroimaging and Data Science Center (TReNDS) is a collaboration among Georgia State University, the Georgia Institute of Technology and Emory University. It focuses on developing, applying and sharing advanced analytic approaches and neuroinformatic tools that leverage cutting-edge brain imaging and large-scale data analysis with a goal of translating these approaches into biomarkers that can help address relevant areas of brain health and disease.

This study was supported in part by National Institutes of Health grants R01MH118695 and R01MH123610.

Researchers utilized data from the U.K. Biobank, a large-scale biomedical database and research resource containing anonymised genetic, lifestyle and health information from half a million participants in the United Kingdom. U.K. Biobank's database, which includes blood samples, heart and brain scans and genetic data of the volunteer participants, is globally accessible to approved researchers undertaking health-related research that’s in the public interest. U.K. Biobank's resource was opened for research use in April 2012. Since then, 30,000 researchers from 100 countries have been approved to use it and more than 7,000 peer-reviewed papers that used the resource have been published.

Passiatore R, Antonucci LA, DeRamus TP, Fazio L, Stolfa G, Sportelli L, Kikidis GC, Blasi G, Chen Q, Dukart J, Goldman AL, Mattay VS, Popolizio T, Rampino A, Sambataro F, Selvaggi P, Ulrich W; Apulian Network on Risk for Psychosis; Weinberger DR, Bertolino A, Calhoun VD, Pergola G.
Changes in patterns of age-related network connectivity are associated with risk for schizophrenia.
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2221533120. doi: 10.1073/pnas.2221533120

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...