New "AI Doctor" Predicts Hospital Readmission and Other Health Outcomes

An artificial intelligence (AI) computer program can read physicians’ notes to accurately estimate patients' risk of death, length of hospital stay, and other factors important to care. Designed by a team led by researchers at NYU Grossman School of Medicine, the tool is currently in use in its affiliated hospitals to predict the chances that a patient who is discharged will be readmitted within a month.

Experts have long explored computer algorithms meant to improve healthcare, with some having been shown to make valuable clinical predictions. However, few are in use because computers best process information laid out in neat tables, while physicians typically write in creative, individualized language that reflects how humans think.

Cumbersome data reorganization has been an obstacle, researchers say, but a new type of AI, large language models (LLM), can "learn" from text without needing specially formatted data.

In a study publishing online June 7 in the journal Nature, the research team designed an LLM called NYUTron that can be trained using unaltered text from electronic health records to make useful assessments about patient health status. The results revealed that the program could predict 80% of those who were readmitted, a roughly 5% improvement over a standard, non-LLM computer model that required reformatting of medical data.

"Our findings highlight the potential for using large language models to guide physicians about patient care," said study lead author Lavender Jiang, BSc, a doctoral student at NYU’s Center for Data Science. "Programs like NYUTron can alert healthcare providers in real time about factors that might lead to readmission and other concerns so they can be swiftly addressed or even averted."

Jiang adds that by automating basic tasks, the technology may speed up workflow and allow physicians to spend more time speaking with their patients.

Large language models use specialized computer algorithms to predict the best word to fill in a sentence based on how likely real people would use a particular term in that context. The more data used to “teach” the computer how to recognize such word patterns, the more accurate its guesses become over time, adds Jiang.

For their study, the researchers trained NYUTron using millions of clinical notes collected from the electronic health records of 336,000 men and women who had received care within the NYU Langone hospital system between January 2011 and May 2020. The resulting 4.1-billion-word language “cloud” included any record written by a doctor, such as radiology reports, patient progress notes, and discharge instructions. Notably, language was not standardized among physicians, and the program could even interpret abbreviations unique to a particular writer.

According to the findings, NYUTron identified 85% of those who died in the hospital (a 7% improvement over standard methods) and estimated 79% of patients’ actual length of stay (a 12% improvement over the standard model). The tool also successfully assessed the likelihood of additional conditions accompanying a primary disease (comorbidity index) as well as the chances of an insurance denial.

"These results demonstrate that large language models make the development of 'smart hospitals' not only a possibility, but a reality," said study senior author and neurosurgeon Eric Oermann, MD. "Since NYUTron reads information taken directly from the electronic health record, its predictive models can be easily built and quickly implemented through the healthcare system."

Jiang LY, Liu XC, Nejatian NP, Nasir-Moin M, Wang D, Abidin A, Eaton K, Riina HA, Laufer I, Punjabi P, Miceli M, Kim NC, Orillac C, Schnurman Z, Livia C, Weiss H, Kurland D, Neifert S, Dastagirzada Y, Kondziolka D, Cheung ATM, Yang G, Cao M, Flores M, Costa AB, Aphinyanaphongs Y, Cho K, Oermann EK.
Health system-scale language models are all-purpose prediction engines.
Nature. 2023 Jun 7. doi: 10.1038/s41586-023-06160-y

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...