New "AI Doctor" Predicts Hospital Readmission and Other Health Outcomes

An artificial intelligence (AI) computer program can read physicians’ notes to accurately estimate patients' risk of death, length of hospital stay, and other factors important to care. Designed by a team led by researchers at NYU Grossman School of Medicine, the tool is currently in use in its affiliated hospitals to predict the chances that a patient who is discharged will be readmitted within a month.

Experts have long explored computer algorithms meant to improve healthcare, with some having been shown to make valuable clinical predictions. However, few are in use because computers best process information laid out in neat tables, while physicians typically write in creative, individualized language that reflects how humans think.

Cumbersome data reorganization has been an obstacle, researchers say, but a new type of AI, large language models (LLM), can "learn" from text without needing specially formatted data.

In a study publishing online June 7 in the journal Nature, the research team designed an LLM called NYUTron that can be trained using unaltered text from electronic health records to make useful assessments about patient health status. The results revealed that the program could predict 80% of those who were readmitted, a roughly 5% improvement over a standard, non-LLM computer model that required reformatting of medical data.

"Our findings highlight the potential for using large language models to guide physicians about patient care," said study lead author Lavender Jiang, BSc, a doctoral student at NYU’s Center for Data Science. "Programs like NYUTron can alert healthcare providers in real time about factors that might lead to readmission and other concerns so they can be swiftly addressed or even averted."

Jiang adds that by automating basic tasks, the technology may speed up workflow and allow physicians to spend more time speaking with their patients.

Large language models use specialized computer algorithms to predict the best word to fill in a sentence based on how likely real people would use a particular term in that context. The more data used to “teach” the computer how to recognize such word patterns, the more accurate its guesses become over time, adds Jiang.

For their study, the researchers trained NYUTron using millions of clinical notes collected from the electronic health records of 336,000 men and women who had received care within the NYU Langone hospital system between January 2011 and May 2020. The resulting 4.1-billion-word language “cloud” included any record written by a doctor, such as radiology reports, patient progress notes, and discharge instructions. Notably, language was not standardized among physicians, and the program could even interpret abbreviations unique to a particular writer.

According to the findings, NYUTron identified 85% of those who died in the hospital (a 7% improvement over standard methods) and estimated 79% of patients’ actual length of stay (a 12% improvement over the standard model). The tool also successfully assessed the likelihood of additional conditions accompanying a primary disease (comorbidity index) as well as the chances of an insurance denial.

"These results demonstrate that large language models make the development of 'smart hospitals' not only a possibility, but a reality," said study senior author and neurosurgeon Eric Oermann, MD. "Since NYUTron reads information taken directly from the electronic health record, its predictive models can be easily built and quickly implemented through the healthcare system."

Jiang LY, Liu XC, Nejatian NP, Nasir-Moin M, Wang D, Abidin A, Eaton K, Riina HA, Laufer I, Punjabi P, Miceli M, Kim NC, Orillac C, Schnurman Z, Livia C, Weiss H, Kurland D, Neifert S, Dastagirzada Y, Kondziolka D, Cheung ATM, Yang G, Cao M, Flores M, Costa AB, Aphinyanaphongs Y, Cho K, Oermann EK.
Health system-scale language models are all-purpose prediction engines.
Nature. 2023 Jun 7. doi: 10.1038/s41586-023-06160-y

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...