New "AI Doctor" Predicts Hospital Readmission and Other Health Outcomes

An artificial intelligence (AI) computer program can read physicians’ notes to accurately estimate patients' risk of death, length of hospital stay, and other factors important to care. Designed by a team led by researchers at NYU Grossman School of Medicine, the tool is currently in use in its affiliated hospitals to predict the chances that a patient who is discharged will be readmitted within a month.

Experts have long explored computer algorithms meant to improve healthcare, with some having been shown to make valuable clinical predictions. However, few are in use because computers best process information laid out in neat tables, while physicians typically write in creative, individualized language that reflects how humans think.

Cumbersome data reorganization has been an obstacle, researchers say, but a new type of AI, large language models (LLM), can "learn" from text without needing specially formatted data.

In a study publishing online June 7 in the journal Nature, the research team designed an LLM called NYUTron that can be trained using unaltered text from electronic health records to make useful assessments about patient health status. The results revealed that the program could predict 80% of those who were readmitted, a roughly 5% improvement over a standard, non-LLM computer model that required reformatting of medical data.

"Our findings highlight the potential for using large language models to guide physicians about patient care," said study lead author Lavender Jiang, BSc, a doctoral student at NYU’s Center for Data Science. "Programs like NYUTron can alert healthcare providers in real time about factors that might lead to readmission and other concerns so they can be swiftly addressed or even averted."

Jiang adds that by automating basic tasks, the technology may speed up workflow and allow physicians to spend more time speaking with their patients.

Large language models use specialized computer algorithms to predict the best word to fill in a sentence based on how likely real people would use a particular term in that context. The more data used to “teach” the computer how to recognize such word patterns, the more accurate its guesses become over time, adds Jiang.

For their study, the researchers trained NYUTron using millions of clinical notes collected from the electronic health records of 336,000 men and women who had received care within the NYU Langone hospital system between January 2011 and May 2020. The resulting 4.1-billion-word language “cloud” included any record written by a doctor, such as radiology reports, patient progress notes, and discharge instructions. Notably, language was not standardized among physicians, and the program could even interpret abbreviations unique to a particular writer.

According to the findings, NYUTron identified 85% of those who died in the hospital (a 7% improvement over standard methods) and estimated 79% of patients’ actual length of stay (a 12% improvement over the standard model). The tool also successfully assessed the likelihood of additional conditions accompanying a primary disease (comorbidity index) as well as the chances of an insurance denial.

"These results demonstrate that large language models make the development of 'smart hospitals' not only a possibility, but a reality," said study senior author and neurosurgeon Eric Oermann, MD. "Since NYUTron reads information taken directly from the electronic health record, its predictive models can be easily built and quickly implemented through the healthcare system."

Jiang LY, Liu XC, Nejatian NP, Nasir-Moin M, Wang D, Abidin A, Eaton K, Riina HA, Laufer I, Punjabi P, Miceli M, Kim NC, Orillac C, Schnurman Z, Livia C, Weiss H, Kurland D, Neifert S, Dastagirzada Y, Kondziolka D, Cheung ATM, Yang G, Cao M, Flores M, Costa AB, Aphinyanaphongs Y, Cho K, Oermann EK.
Health system-scale language models are all-purpose prediction engines.
Nature. 2023 Jun 7. doi: 10.1038/s41586-023-06160-y

Most Popular Now

Collective Intelligence can Help Reduce …

An estimated 250,000 people die from preventable medical errors in the U.S. each year. Many of these errors originate during the diagnostic process. A powerful way to increase diagnostic accuracy...

New Study Suggests ECG-AI can Detect Car…

Artificial intelligence (AI) from patient electrocardiograms (ECGs) may be an innovative solution to enhance heart disease risk assessment. Atherosclerotic cardiovascular disease - arteries narrowed or blocked by the accumulation of...

Software Created from 'Building Blo…

New 'building-block' approaches to the creation of digital tools which include data and artificial intelligence (AI) could play a key role in improving the running of hospital wards and disease...

How could Technology Better Support Pati…

The NHS exists to serve patients. But more could be done to make their experience a key focus when it comes to technology adoption, senior NHS delegates told a recent...

"Showtime" for Digital Health …

13 - 16 November 2023, Düsseldorf, Germany. A hundred start-ups and more than 120 high-calibre professional speakers: These are just the "naked" facts which this year's MEDICA CONNECTED HEALTHCARE FORUM will...

Artificial Intelligence: Unexpected Resu…

Artificial intelligence (AI) is on the rise. Until now, AI applications generally have "black box" character: How AI arrives at its results remains hidden. Prof. Dr. Jürgen Bajorath, a cheminformatics...

Philips Program Developing AI-Powered Ul…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has received a second round of funding from the Bill & Melinda Gates Foundation to...

CGM Continues to Drive Digitization in H…

CompuGroup Medical SE & Co. KGaA (CGM), one of the world's leading e-health providers, successfully progressed the digitization in healthcare during the first three quarters in 2023. CGM supports physicians...

Wolverhampton's New 10-Year EPR Dea…

The Royal Wolverhampton NHS Trust (RWT) has just signed a 10-year contract with System C for an integrated electronic patient record (EPR) system, which will replace the trust's in-house built...

Printed Robots with Bones, Ligaments, an…

3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been...

Orchestrating the New World of AI in Hea…

Orion Health's UK and Ireland Customer Conference 2023 focused on the future potential and immediate, practical application of AI to healthcare - and gave delegates a first look at the...

Researchers Take New AI Approach to Anal…

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue...