New Algorithm can Predict Diabetic Kidney Disease

Researchers from Sanford Burnham Prebys and the Chinese University of Hong Kong have developed a computational approach to predict whether a person with type 2 diabetes will develop kidney disease, a frequent and dangerous complication of diabetes. Their results, published in Nature Communications, could help doctors prevent or better manage kidney disease in people with type 2 diabetes.

"This study provides a glimpse into the powerful future of predictive diagnostics," says co-senior author Kevin Yip, Ph.D., a professor and director of Bioinformatics at Sanford Burnham Prebys. "Our team has demonstrated that by combining clinical data with cutting-edge technology, it's possible to develop computational models to help clinicians optimize the treatment of type 2 diabetes to prevent kidney disease."

Diabetes is the leading cause of kidney failure worldwide. In the United States, 44% of cases of end-stage kidney disease and dialysis are due to diabetes. In Asia, this number is 50%.

"There has been significant progress developing treatments for kidney disease in people with diabetes," says co-senior author Ronald Ma, MB BChir, FRCP, a professor in the Department of Medicine and Therapeutics at the Chinese University of Hong Kong. "However, it can be difficult to assess an individual patient's risk for developing kidney disease based on clinical factors alone, so determining who is at greatest risk of developing diabetic kidney disease is an important clinical need."

The new algorithm depends on measurements of a process called DNA methylation, which occurs when subtle changes accumulate in our DNA. DNA methylation can encode important information about which genes are being turned on and off, and it can be easily measured through blood tests.

"Our computational model can use methylation markers from a blood sample to predict both current kidney function and how the kidneys will function years in the future, which means it could be easily implemented alongside current methods for evaluating a patient’s risk for kidney disease," says Yip.

The researchers developed their model using detailed data from more than 1,200 patients with type 2 diabetes in the Hong Kong Diabetes Register. They also tested their model on a separate group of 326 Native Americans with type 2 diabetes, which helped ensure that their approach could predict kidney disease in different populations.

"This study highlights the unique strength of the Hong Kong Diabetes Register and its huge potential to fuel further discoveries to improve our understanding of diabetes and its complications," says study co-author Juliana Chan, M.D., FRCP, a professor in the Department of Medicine and Therapeutics at the Chinese University of Hong Kong, who established the Hong Kong Diabetes Register more than two decades ago.

"The Hong Kong Diabetes Register is a scientific treasure," adds first author Kelly Yichen Li, Ph.D., a postdoctoral scientist at Sanford Burnham Prebys. "They follow up with patients for many years, which gives us a full picture of how human health can change over decades in people with diabetes."

The researchers are currently working to further refine their model. They are also expanding the application of their approach to look at other questions about human health and disease - such as determining why some people with cancer don't respond well to certain treatments.

"The science is still evolving, but we are working on incorporating additional information into our model to further empower precision medicine in diabetes," adds Ma.

Li KY, Tam CHT, Liu H et al.
DNA methylation markers for kidney function and progression of diabetic kidney disease.
Nat Commun 14, 2543 (2023). 10.1038/s41467-023-37837-7

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...