New Algorithm can Predict Diabetic Kidney Disease

Researchers from Sanford Burnham Prebys and the Chinese University of Hong Kong have developed a computational approach to predict whether a person with type 2 diabetes will develop kidney disease, a frequent and dangerous complication of diabetes. Their results, published in Nature Communications, could help doctors prevent or better manage kidney disease in people with type 2 diabetes.

"This study provides a glimpse into the powerful future of predictive diagnostics," says co-senior author Kevin Yip, Ph.D., a professor and director of Bioinformatics at Sanford Burnham Prebys. "Our team has demonstrated that by combining clinical data with cutting-edge technology, it's possible to develop computational models to help clinicians optimize the treatment of type 2 diabetes to prevent kidney disease."

Diabetes is the leading cause of kidney failure worldwide. In the United States, 44% of cases of end-stage kidney disease and dialysis are due to diabetes. In Asia, this number is 50%.

"There has been significant progress developing treatments for kidney disease in people with diabetes," says co-senior author Ronald Ma, MB BChir, FRCP, a professor in the Department of Medicine and Therapeutics at the Chinese University of Hong Kong. "However, it can be difficult to assess an individual patient's risk for developing kidney disease based on clinical factors alone, so determining who is at greatest risk of developing diabetic kidney disease is an important clinical need."

The new algorithm depends on measurements of a process called DNA methylation, which occurs when subtle changes accumulate in our DNA. DNA methylation can encode important information about which genes are being turned on and off, and it can be easily measured through blood tests.

"Our computational model can use methylation markers from a blood sample to predict both current kidney function and how the kidneys will function years in the future, which means it could be easily implemented alongside current methods for evaluating a patient’s risk for kidney disease," says Yip.

The researchers developed their model using detailed data from more than 1,200 patients with type 2 diabetes in the Hong Kong Diabetes Register. They also tested their model on a separate group of 326 Native Americans with type 2 diabetes, which helped ensure that their approach could predict kidney disease in different populations.

"This study highlights the unique strength of the Hong Kong Diabetes Register and its huge potential to fuel further discoveries to improve our understanding of diabetes and its complications," says study co-author Juliana Chan, M.D., FRCP, a professor in the Department of Medicine and Therapeutics at the Chinese University of Hong Kong, who established the Hong Kong Diabetes Register more than two decades ago.

"The Hong Kong Diabetes Register is a scientific treasure," adds first author Kelly Yichen Li, Ph.D., a postdoctoral scientist at Sanford Burnham Prebys. "They follow up with patients for many years, which gives us a full picture of how human health can change over decades in people with diabetes."

The researchers are currently working to further refine their model. They are also expanding the application of their approach to look at other questions about human health and disease - such as determining why some people with cancer don't respond well to certain treatments.

"The science is still evolving, but we are working on incorporating additional information into our model to further empower precision medicine in diabetes," adds Ma.

Li KY, Tam CHT, Liu H et al.
DNA methylation markers for kidney function and progression of diabetic kidney disease.
Nat Commun 14, 2543 (2023). 10.1038/s41467-023-37837-7

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...