Better than Humans: AI in Intensive Care Units

In the future, artificial intelligence (AI) will play an important role in medicine. In diagnostics, successful tests have already been performed: for example, the computer can learn to categorise images with great accuracy according to whether they show pathological changes or not. However, it is more difficult to train an AI to examine the time-varying conditions of patients and to calculate treatment suggestions - this is precisely what has now been achieved at TU Wien in cooperation with the Medical University of Vienna.

With the help of extensive data from intensive care units of various hospitals, an artificial intelligence was developed that provides suggestions for the treatment of people who require intensive care due to sepsis. Analyses show that artificial intelligence already surpasses the quality of human decisions. However, it is now important to also discuss the legal aspects of such methods.

Making optimal use of existing data

"In an intensive care unit, a lot of different data is collected around the clock. The patients are constantly monitored medically. We wanted to investigate whether these data could be used even better than before," says Prof. Clemens Heitzinger from the Institute for Analysis and Scientific Computing at TU Wien (Vienna). He is also Co-Director of the cross-faculty "Center for Artificial Intelligence and Machine Learning" (CAIML) at TU Wien.

Medical staff make their decisions on the basis of well-founded rules. Most of the time, they know very well which parameters they have to take into account in order to provide the best care. However, the computer can easily take many more parameters than a human into account - and in some cases this can lead to even better decisions.

The computer as planning agent

"In our project, we used a form of machine learning called reinforcement learning," says Clemens Heitzinger. "This is not just about simple categorisation - for example, separating a large number of images into those that show a tumour and those that do not - but about a temporally changing progression, about the development that a certain patient is likely to go through. Mathematically, this is something quite different. There has been little research in this regard in the medical field."

The computer becomes an agent that makes its own decisions: if the patient is well, the computer is "rewarded". If the condition deteriorates or death occurs, the computer is "punished". The computer programme has the task of maximising its virtual "reward" by taking actions. In this way, extensive medical data can be used to automatically determine a strategy which achieves a particularly high probability of success.

Already better than a human

"Sepsis is one of the most common causes of death in intensive care medicine and poses an enormous challenge for doctors and hospitals, as early detection and treatment is crucial for patient survival," says Prof. Oliver Kimberger from the Medical University of Vienna. "So far, there have been few medical breakthroughs in this field, which makes the search for new treatments and approaches all the more urgent. For this reason, it is particularly interesting to investigate the extent to which artificial intelligence can contribute to improve medical care here. Using machine learning models and other AI technologies are an opportunity to improve the diagnosis and treatment of sepsis, ultimately increasing the chances of patient survival."

Analysis shows that AI capabilities are already outperforming humans: "Cure rates are now higher with an AI strategy than with purely human decisions. In one of our studies, the cure rate in terms of 90-day mortality was increased by about 3% to about 88%," says Clemens Heitzinger.

Of course, this does not mean that one should leave medical decisions in an intensive care unit to the computer alone. But the artificial intelligence may run along as an additional device at the bedside - and the medical staff can consult it and compare their own assessment with the artificial intelligence's suggestions. Such artificial intelligences can also be highly useful in education.

Discussion about legal issues is necessary

"However, this raises important questions, especially legal ones," says Clemens Heitzinger. "One probably thinks of the question who will be held liable for any mistakes made by the artificial intelligence first. But there is also the converse problem: what if the artificial intelligence had made the right decision, but the human chose a different treatment option and the patient suffered harm as a result?" Does the doctor then face the accusation that it would have been better to trust the artificial intelligence because it comes with a huge wealth of experience? Or should it be the human's right to ignore the computer's advice at all times?

"The research project shows: artificial intelligence can already be used successfully in clinical practice with today's technology - but a discussion about the social framework and clear legal rules are still urgently needed," Clemens Heitzinger is convinced.

Bologheanu R, Kapral L, Laxar D, Maleczek M, Dibiasi C, Zeiner S, Agibetov A, Ercole A, Thoral P, Elbers P, Heitzinger C, Kimberger O.
Development of a Reinforcement Learning Algorithm to Optimize Corticosteroid Therapy in Critically Ill Patients with Sepsis.
J Clin Med. 2023 Feb 14;12(4):1513. doi: 10.3390/jcm12041513

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...