AI Identifies Anti-Aging Drug Candidates Targeting 'Zombie' Cells

A new publication in the May issue of Nature Aging by researchers from Integrated Biosciences, a biotechnology company combining synthetic biology and machine learning to target aging, demonstrates the power of artificial intelligence (AI) to discover novel senolytic compounds, a class of small molecules under intense study for their ability to suppress age-related processes such as fibrosis, inflammation and cancer. The paper, "Discovering small-molecule senolytics with deep neural networks," authored in collaboration with researchers from the Massachusetts Institute of Technology (MIT) and the Broad Institute of MIT and Harvard, describes the AI-guided screening of more than 800,000 compounds to reveal three drug candidates with comparable efficacy and superior medicinal chemistry properties than those of senolytics currently under investigation.

"This research result is a significant milestone for both longevity research and the application of artificial intelligence to drug discovery," said Felix Wong, Ph.D., co-founder of Integrated Biosciences and first author of the publication. "These data demonstrate that we can explore chemical space in silico and emerge with multiple candidate anti-aging compounds that are more likely to succeed in the clinic, compared to even the most promising examples of their kind being studied today."

Senolytics are compounds that selectively induce apoptosis, or programmed cell death, in senescent cells that are no longer dividing. A hallmark of aging, senescent cells have been implicated in a broad spectrum of age-related diseases and conditions including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. Despite promising clinical results, most senolytic compounds identified to date have been hampered by poor bioavailability and adverse side effects. Integrated Biosciences was founded in 2022 to overcome these obstacles, target other neglected hallmarks of aging, and advance anti-aging drug development more generally using artificial intelligence, synthetic biology and other next-generation tools.

"One of the most promising routes to treat age-related diseases is to identify therapeutic interventions that selectively remove these cells from the body similarly to how antibiotics kill bacteria without harming host cells. The compounds we discovered display high selectivity, as well as the favorable medicinal chemistry properties needed to yield a successful drug," said Satotaka Omori, Ph.D., Head of Aging Biology at Integrated Biosciences and joint first author of the publication. "We believe that the compounds discovered using our platform will have improved prospects in clinical trials and will eventually help restore health to aging individuals."

In their new study, Integrated Biosciences researchers trained deep neural networks on experimentally generated data to predict the senolytic activity of any molecule. Using this AI model, they discovered three highly selective and potent senolytic compounds from a chemical space of over 800,000 molecules. All three displayed chemical properties suggestive of high oral bioavailability and were found to have favorable toxicity profiles in hemolysis and genotoxicity tests. Structural and biochemical analyses indicate that all three compounds bind Bcl-2, a protein that regulates apoptosis and is also a chemotherapy target. Experiments testing one of the compounds in 80-week-old mice, roughly corresponding to 80-year-old humans, found that it cleared senescent cells and reduced expression of senescence-associated genes in the kidneys.

"This work illustrates how AI can be used to bring medicine a step closer to therapies that address aging, one of the fundamental challenges in biology," said James J. Collins, Ph.D., Termeer Professor of Medical Engineering and Science at MIT and founding chair of the Integrated Biosciences Scientific Advisory Board. "Integrated Biosciences is building on the basic research that my academic lab has done for the last decade or so, showing that we can target cellular stress responses using systems and synthetic biology. This experimental tour de force and the stellar platform that produced it make this work stand out in the field of drug discovery and will drive substantial progress in longevity research."

Dr. Collins, who is senior author on the Nature Aging paper, led the team which discovered the first antibiotic identified by machine learning in 2020.

Wong F, Omori S, Donghia NM, Zheng EJ, Collins JJ.
Discovering small-molecule senolytics with deep neural networks.
Nat Aging. 2023 May 4. doi: 10.1038/s43587-023-00415-z

Most Popular Now

AI could Improve Heart Attack Diagnosis …

An algorithm developed using artificial intelligence (AI) could soon be used by doctors to diagnose heart attacks with better speed and accuracy than ever before, according to new research from...

New Algorithm can Predict Diabetic Kidne…

Researchers from Sanford Burnham Prebys and the Chinese University of Hong Kong have developed a computational approach to predict whether a person with type 2 diabetes will develop kidney disease...

AI Predicts Future Pancreatic Cancer

An artificial intelligence (AI) tool has successfully identified people at the highest risk for pancreatic cancer up to three years before diagnosis using solely the patients’ medical records, according to...

AI Voice Coach Shows Promise in Depressi…

Artificial intelligence (AI) could be a useful tool in mental health treatment, according to the results of a new pilot study led by University of Illinois Chicago researchers. The study...

ChatGPT Passes Radiology Board Exam

The latest version of ChatGPT passed a radiology board-style exam, highlighting the potential of large language models but also revealing limitations that hinder reliability, according to two new research studies...

Scientists develop AI tool to predict Pa…

Scientists from UNSW Sydney with collaborators at Boston University have developed a tool that shows early promise in detecting Parkinson’s disease years before the first symptoms start appearing. In research published...

Better than Humans: AI in Intensive Care…

In the future, artificial intelligence (AI) will play an important role in medicine. In diagnostics, successful tests have already been performed: for example, the computer can learn to categorise images...

Could Online Gaming Social Networks Have…

For millions of Americans playing some type of video game is a daily occurrence. Games can be a welcome form of entertainment and relaxation for many, and the internet can...

Siemens Healthineers Opens State-of-the-…

Siemens Healthineers has opened its new Education & Development Center (EDC) in Erlangen. The open-plan building offers space for the currently 240 trainees and integrated degree program participants in Erlangen...

Siemens Healthineers Invests 80 Million …

Siemens Healthineers is building a new factory in Forchheim for the cultivation of crystals for semiconductor production. The total investment amounts to 80 million euros. The new factory is expected...

Orion Health Welcomes New Sales Director…

Orion Health has appointed a new sales director for Scotland. Gabriel Radford, who has a background in business development for companies working with health, social care, and local government, will...

AI Tool Outperforms Human Emergency Call…

A team of researchers from Denmark have developed a new artificial intelligence (AI) framework to address the number of strokes that go unrecognised by human emergency call handlers.(1) The framework...