AI in Medical Imaging could Magnify Health Inequities

Artificial intelligence (AI) technology in the medical field has the possibility to automate diagnoses, decrease physician workload, and even to bring specialized healthcare to people in rural areas or developing countries. However, with possibility comes potential pitfalls.

Analyzing crowd-sourced sets of data used to create AI algorithms from medical images, University of Maryland School of Medicine (UMSOM) researchers found that most did not include patient demographics. In the study published April 3 in Nature Medicine, the researchers also found that the algorithms did not evaluate for inherent biases either. That means they have no way of knowing whether these images contain representative samples of the population such as Blacks, Asians, and Indigenous Americans.

According to the researchers, much of medicine in the U.S. is already fraught with partiality toward certain races, genders, ages, or sexual orientations. Small biases in individual sets of data could be amplified greatly when hundreds or thousands of these datasets are combined in these algorithms.

"These deep learning models can diagnose things physicians can’t see, such as when a person might die or detect Alzheimer's disease seven years earlier than our known tests - superhuman tasks," said senior investigator Paul Yi, MD, Assistant Professor of Diagnostic Radiology and Nuclear Medicine at UMSOM. He is also Director of University of Maryland Medical Intelligent Imaging (UM2ii) Center. "Because these AI machine learning techniques are so good at finding needles in a haystack, they can also define sex, gender, and age, which means these models can then use those features to make biased decisions."

Much of the data collected in large studies tends to be from people of means who have relatively easy access to healthcare. In the U.S., this means the data tends to be skewed toward men versus women, and toward people who are white rather than other races. As the U.S. tends to perform more imaging than the rest of the world, this data gets compiled into algorithms that have the potential to slant outcomes worldwide.

For the current study, the researchers chose to evaluate the datasets used in data science competitions in which computer scientists and physicians crowdsource data from around the world and try to develop the best, most accurate algorithm. These competitions tend to have leaderboards that rank each algorithm and provide a cash prize, motivating people to create the best one. Specifically, the researchers investigated medical imaging algorithms, such as those that evaluate CT scans to diagnose brain tumors or blood clots in the lungs. Of the 23 data competitions analyzed, 61 percent did not include demographic data such as age, sex, or race. None of the competitions had evaluations for biases against underrepresented or disadvantaged groups.

"We hope that by bringing awareness to this issue in these data competitions - and if applied in an appropriate way - that there is tremendous potential to solve these biases," said lead author Sean Garin, Program Coordinator at the UM2ii Center.

The study's authors also encourage future competitions to require not only high accuracy, but also fairness among different groups of people.

"As AI models become more prevalent in medical imaging and other fields of medicine, it is important to identify and address potential biases that may exacerbate existing health inequities in clinical care - an essential priority for every academic medical institution," said UMSOM Dean Mark T. Gladwin, MD, Vice President for Medical Affairs, University of Maryland, Baltimore, and the John Z. and Akiko K. Bowers Distinguished Professor.

Garin, S.P., Parekh, V.S., Sulam, J. et al.
Medical imaging data science competitions should report dataset demographics and evaluate for bias.
Nat Med, 2023. doi: 10.1038/s41591-023-02264-0

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...