AI in Medical Imaging could Magnify Health Inequities

Artificial intelligence (AI) technology in the medical field has the possibility to automate diagnoses, decrease physician workload, and even to bring specialized healthcare to people in rural areas or developing countries. However, with possibility comes potential pitfalls.

Analyzing crowd-sourced sets of data used to create AI algorithms from medical images, University of Maryland School of Medicine (UMSOM) researchers found that most did not include patient demographics. In the study published April 3 in Nature Medicine, the researchers also found that the algorithms did not evaluate for inherent biases either. That means they have no way of knowing whether these images contain representative samples of the population such as Blacks, Asians, and Indigenous Americans.

According to the researchers, much of medicine in the U.S. is already fraught with partiality toward certain races, genders, ages, or sexual orientations. Small biases in individual sets of data could be amplified greatly when hundreds or thousands of these datasets are combined in these algorithms.

"These deep learning models can diagnose things physicians can’t see, such as when a person might die or detect Alzheimer's disease seven years earlier than our known tests - superhuman tasks," said senior investigator Paul Yi, MD, Assistant Professor of Diagnostic Radiology and Nuclear Medicine at UMSOM. He is also Director of University of Maryland Medical Intelligent Imaging (UM2ii) Center. "Because these AI machine learning techniques are so good at finding needles in a haystack, they can also define sex, gender, and age, which means these models can then use those features to make biased decisions."

Much of the data collected in large studies tends to be from people of means who have relatively easy access to healthcare. In the U.S., this means the data tends to be skewed toward men versus women, and toward people who are white rather than other races. As the U.S. tends to perform more imaging than the rest of the world, this data gets compiled into algorithms that have the potential to slant outcomes worldwide.

For the current study, the researchers chose to evaluate the datasets used in data science competitions in which computer scientists and physicians crowdsource data from around the world and try to develop the best, most accurate algorithm. These competitions tend to have leaderboards that rank each algorithm and provide a cash prize, motivating people to create the best one. Specifically, the researchers investigated medical imaging algorithms, such as those that evaluate CT scans to diagnose brain tumors or blood clots in the lungs. Of the 23 data competitions analyzed, 61 percent did not include demographic data such as age, sex, or race. None of the competitions had evaluations for biases against underrepresented or disadvantaged groups.

"We hope that by bringing awareness to this issue in these data competitions - and if applied in an appropriate way - that there is tremendous potential to solve these biases," said lead author Sean Garin, Program Coordinator at the UM2ii Center.

The study's authors also encourage future competitions to require not only high accuracy, but also fairness among different groups of people.

"As AI models become more prevalent in medical imaging and other fields of medicine, it is important to identify and address potential biases that may exacerbate existing health inequities in clinical care - an essential priority for every academic medical institution," said UMSOM Dean Mark T. Gladwin, MD, Vice President for Medical Affairs, University of Maryland, Baltimore, and the John Z. and Akiko K. Bowers Distinguished Professor.

Garin, S.P., Parekh, V.S., Sulam, J. et al.
Medical imaging data science competitions should report dataset demographics and evaluate for bias.
Nat Med, 2023. doi: 10.1038/s41591-023-02264-0

Most Popular Now

AI could Improve Heart Attack Diagnosis …

An algorithm developed using artificial intelligence (AI) could soon be used by doctors to diagnose heart attacks with better speed and accuracy than ever before, according to new research from...

New Algorithm can Predict Diabetic Kidne…

Researchers from Sanford Burnham Prebys and the Chinese University of Hong Kong have developed a computational approach to predict whether a person with type 2 diabetes will develop kidney disease...

AI Predicts Future Pancreatic Cancer

An artificial intelligence (AI) tool has successfully identified people at the highest risk for pancreatic cancer up to three years before diagnosis using solely the patients’ medical records, according to...

AI Voice Coach Shows Promise in Depressi…

Artificial intelligence (AI) could be a useful tool in mental health treatment, according to the results of a new pilot study led by University of Illinois Chicago researchers. The study...

ChatGPT Passes Radiology Board Exam

The latest version of ChatGPT passed a radiology board-style exam, highlighting the potential of large language models but also revealing limitations that hinder reliability, according to two new research studies...

Scientists develop AI tool to predict Pa…

Scientists from UNSW Sydney with collaborators at Boston University have developed a tool that shows early promise in detecting Parkinson’s disease years before the first symptoms start appearing. In research published...

Better than Humans: AI in Intensive Care…

In the future, artificial intelligence (AI) will play an important role in medicine. In diagnostics, successful tests have already been performed: for example, the computer can learn to categorise images...

Could Online Gaming Social Networks Have…

For millions of Americans playing some type of video game is a daily occurrence. Games can be a welcome form of entertainment and relaxation for many, and the internet can...

Siemens Healthineers Opens State-of-the-…

Siemens Healthineers has opened its new Education & Development Center (EDC) in Erlangen. The open-plan building offers space for the currently 240 trainees and integrated degree program participants in Erlangen...

Siemens Healthineers Invests 80 Million …

Siemens Healthineers is building a new factory in Forchheim for the cultivation of crystals for semiconductor production. The total investment amounts to 80 million euros. The new factory is expected...

Orion Health Welcomes New Sales Director…

Orion Health has appointed a new sales director for Scotland. Gabriel Radford, who has a background in business development for companies working with health, social care, and local government, will...

AI Tool Outperforms Human Emergency Call…

A team of researchers from Denmark have developed a new artificial intelligence (AI) framework to address the number of strokes that go unrecognised by human emergency call handlers.(1) The framework...