New AI Algorithm Boosts COVID-19 mRNA Vaccine Antibody Response by 128 Times

A team of researchers from Baidu Research has developed an AI algorithm that can rapidly design highly stable COVID-19 mRNA vaccine sequences that were previously unattainable. The algorithm, named LinearDesign, represents a major leap in both stability and efficacy for vaccine sequences, achieving a 128-fold increase in the COVID-19 vaccine's antibody response.

"This research can apply mRNA medicine encoding to a wider range of therapeutic proteins, such as monoclonal antibodies and anti-cancer drugs, promising broad applications and far-reaching impact," said Dr. He Zhang, Staff Software Engineer at Baidu Research.

Through a collaboration with Oregon State University, StemiRNA Therapeutics, and the University of Rochester Medical Center, the study "Algorithm for Optimized mRNA Design Improves Stability and Immunogenicity" appeared in the scientific journal Nature today through Accelerated Article Preview (AAP). This marks the first time a Chinese tech company has been credited as the first affiliation on a paper published in Nature.

The paper reveals how a complex biology problem can be tackled by taking a classic approach from natural language processing (NLP), using an elegantly simple solution that has been employed to understand words and grammar.

mRNA, or Messager RNA, has emerged as a revolutionary technology for vaccine development and potential treatments against cancer and other diseases. Serving as a vital messenger that carries genetic instructions from DNA to the cell’s protein-making machinery, mRNA enables the creation of specific proteins for various functions in the human body. With numerous advantages in safety, efficacy, and production, mRNA has been swiftly adopted in the process of COVID-19 vaccine development.

However, the natural instability of mRNA results in insufficient protein expression that weakens a vaccine’s capacity to stimulate strong immune responses. This instability also poses challenges for storing and transporting mRNA vaccines, especially in developing countries where resources are often limited.

Previous research has shown that optimizing the secondary structure stability of mRNA, when combined with optimal codons, leads to improved protein expression. The challenge lies in the mRNA design space, which is incredibly vast due to synonymous codons. For instance, there are approximately 10^632 mRNAs that can be translated into the same SARS-CoV-2 Spike protein, presenting insurmountable challenges for prior methods.

Though NLP and biology may at first glance appear unrelated, the two fields share strong mathematical connections. In human language, a sentence consists of a word sequence and an underlying syntactic tree with noun and verb phrases, which together convey meaning. Likewise, an RNA strand has a nucleotide sequence and an associated secondary structure based on its folding pattern.

Researchers used a technique in language processing called lattice parsing, which represents potential word connections in a lattice graph and selects the most plausible option based on grammar. Similarly, they created a graph that compactly represents all mRNA candidates, using deterministic finite-state automaton (DFA). Applying lattice parsing to mRNA, finding the optimal mRNA is akin to identifying the most likely sentence among a range of similar-sounding alternatives.

Using this approach, LinearDesign takes a mere 11 minutes to generate the most stable mRNA sequence that encodes Spike protein.

In a head-to-head comparison, the sequences designed by LinearDesign exhibited significantly improved results compared to existing vaccine sequences. For COVID-19 mRNA vaccine sequences, the algorithm achieved up to a 5-fold increase in stability (mRNA half-life), a 3-fold increase in protein expression levels (within 48 hours), and an incredible 128-fold increase in antibody response. For VZV mRNA vaccine sequences, the study reported up to a 6-fold increase in stability (mRNA molecule half-life), a 5.3-fold increase in protein expression levels (48 hours), and an 8-fold increase in antibody response.

"The vaccines designed through our method may offer better protection with the same dosage, and potentially provide equal protection with a smaller dose, leading to fewer side effects. This will greatly reduce the vaccine research and development costs for biopharmaceutical companies while improving the outcomes," Dr. Zhang added. In 2021, Baidu and Sanofi began a partnership to integrate the LinearDesign algorithm into Sanofi's product design pipeline for mRNA vaccine and drug development.

Baidu has created a bio-computing platform based on PaddlePaddle called PaddleHelix, which encompasses the ERNIE-Bio-Computing Big Models. This platform explores the application of AI in various fields, such as small molecules, proteins/peptides, and RNA, offering a novel research paradigm for AI in life sciences. Baidu’s ERNIE Big Model has developed a comprehensive big model technology system, covering NLP, vision, cross-modal, and bio-computing. The recently unveiled ERNIE Bot, a knowledge-enhanced large language model (LLM) capable of understanding and generating human language, is part of the ERNIE Big Model family.

Moving forward, Baidu will continue to explore AI applications in life sciences, broadening the scope and depth of inclusive technology, and championing the health and well-being of all humanity.

Zhang, H., Zhang, L., Lin, A. et al.
Algorithm for Optimized mRNA Design Improves Stability and Immunogenicity.
Nature, 2023. doi: 10.1038/s41586-023-06127-z

Most Popular Now

AI could Improve Heart Attack Diagnosis …

An algorithm developed using artificial intelligence (AI) could soon be used by doctors to diagnose heart attacks with better speed and accuracy than ever before, according to new research from...

New Algorithm can Predict Diabetic Kidne…

Researchers from Sanford Burnham Prebys and the Chinese University of Hong Kong have developed a computational approach to predict whether a person with type 2 diabetes will develop kidney disease...

AI Predicts Future Pancreatic Cancer

An artificial intelligence (AI) tool has successfully identified people at the highest risk for pancreatic cancer up to three years before diagnosis using solely the patients’ medical records, according to...

AI Voice Coach Shows Promise in Depressi…

Artificial intelligence (AI) could be a useful tool in mental health treatment, according to the results of a new pilot study led by University of Illinois Chicago researchers. The study...

ChatGPT Passes Radiology Board Exam

The latest version of ChatGPT passed a radiology board-style exam, highlighting the potential of large language models but also revealing limitations that hinder reliability, according to two new research studies...

Scientists develop AI tool to predict Pa…

Scientists from UNSW Sydney with collaborators at Boston University have developed a tool that shows early promise in detecting Parkinson’s disease years before the first symptoms start appearing. In research published...

Better than Humans: AI in Intensive Care…

In the future, artificial intelligence (AI) will play an important role in medicine. In diagnostics, successful tests have already been performed: for example, the computer can learn to categorise images...

Could Online Gaming Social Networks Have…

For millions of Americans playing some type of video game is a daily occurrence. Games can be a welcome form of entertainment and relaxation for many, and the internet can...

Siemens Healthineers Opens State-of-the-…

Siemens Healthineers has opened its new Education & Development Center (EDC) in Erlangen. The open-plan building offers space for the currently 240 trainees and integrated degree program participants in Erlangen...

Siemens Healthineers Invests 80 Million …

Siemens Healthineers is building a new factory in Forchheim for the cultivation of crystals for semiconductor production. The total investment amounts to 80 million euros. The new factory is expected...

Orion Health Welcomes New Sales Director…

Orion Health has appointed a new sales director for Scotland. Gabriel Radford, who has a background in business development for companies working with health, social care, and local government, will...

AI Tool Outperforms Human Emergency Call…

A team of researchers from Denmark have developed a new artificial intelligence (AI) framework to address the number of strokes that go unrecognised by human emergency call handlers.(1) The framework...