Optimizing Sepsis Treatment Timing with a Machine Learning Model

A new machine learning model that estimates optimal treatment timing for sepsis could pave the way for support tools that help physicians personalize treatment decisions at the patient bedside, researchers say.

In a paper published today in Nature Machine Intelligence, scientists from The Ohio State University describe the new model, which uses artificial intelligence to take on the complex question of when to administer antibiotics to patients with a suspected case of sepsis.

Time is of the essence because sepsis, the body's overwhelming response to an infection, can rapidly lead to organ failure. And yet, its symptoms - fever, low blood pressure, increasing heart rate and breathing problems - can look like a lot of other conditions. Federal guidelines call for quick treatment with broad-spectrum antibiotics as the first line of defense - a strategy that typically requires action before cultures confirming a bacterial infection can be obtained from a lab.

The model was designed to take into account these uncertainties and time pressures.

Researchers tested the model’s performance using critical-care patient information from a U.S. database and a European database, comparing outcomes in patients whose actual treatment matched the model's recommended treatment timeline to outcomes for patients whose actual treatment had differed from what the model would have recommended based on their vital signs, lab results and risk-related demographic data. The measure representing the outcome was patient survival 30 and 60 days after sepsis treatment.

"We showed that when the actual treatment and artificial intelligence agree, we have a lower mortality rate. If they don't agree, the mortality rate can be as high as 25%," said senior author Ping Zhang, PhD, assistant professor of computer science and engineering and biomedical informatics at Ohio State.

The model was trained and validated on a dataset obtained from a publicly available database, called MIMIC-III. The model was tested on different portions of MIMIC-III and a new external dataset from AmsterdamUMCdb. Key measures from almost 14,000 individuals with sepsis included changes to patient vital signs and lab test results as time passed - serving as indicators of illness severity and type of infection - and an innovative method devised to compare outcomes for patients who did and did not receive antibiotics at a specific time.

"We want the modeling to predict whether it’s beneficial to use antibiotics at a given time - yes or no. But we'll never know what happens if we don't give the antibiotic. So we applied a clinical trial concept to this model: For every patient who had taken the drug, we included a matched, clinically similar patient who didn't take antibiotics at that time," said Zhang, who leads the Artificial Intelligence in Medicine Lab and is also a core faculty member in Ohio State's Translational Data Analytics Institute. "That way, we can predict the counterfactual outcome, and train the counterfactual treatment model to find whether treatment for sepsis works or not."

Sepsis contributes to more than one-third of in-hospital deaths, and is seen most often in intensive care units and emergency departments, "where we're often making decisions without the gold standard - results from a culture," said study co-author Katherine Buck, MD, assistant professor of emergency medicine in the College of Medicine and director of the Geriatric Emergency Department at Ohio State Wexner Medical Center. "Not every patient that meets sepsis criteria goes on to have proof of a bacterial infection."

Antibiotics don’t come without risks - they can be toxic to kidneys, prompt an allergic reaction or lead to C. difficile, an infection that causes severe diarrhea and inflammation of the colon.

"What this paper starts to get at is, can we use information available to the clinicians, sometimes at the forefront and sometimes not, to say: Things are changing in a way that suggests the patient will benefit from antibiotics," Buck said. "A decision-support tool could tell clinicians if it matches what we’re already thinking or prompt us to ask ourselves what we’re missing. Hopefully, with time, all the electronic health record data we have will reveal signals - and from there it’s a matter of figuring out how to use them and how to get that to clinicians."

Those insights - and availability of electronic health record data - were important to feeding the model with the right kind of data and designing it to take into account multiple considerations that come with changing medical circumstances, Zhang said.

"We modeled the patient record like it’s language," he said. "And for machine learning, we always train the model batch by batch - you need the model to analyze the pattern of data, set parameters, and based on these parameters, add another training dataset to make improvements. And then the machine always finds better parameters to fit the model."

A key measure used to guide how the model arrives at a recommendation is the Sequential Organ Failure Assessment (SOFA) score, which is used to regularly assess how an ICU patient's organ systems are performing based on results from six lab tests. The researchers ran example case studies to demonstrate what an interface developed for the clinical setting might look like, showing how SOFA scores change when the model adjusts the recommended treatment timeline based on changes to personalized patient data.

"Our paper is the first to use AI to pursue an antibiotic recommendation for sepsis, using real-world data to help clinical decision making," Zhang said. "Any research like this needs clinical validation - this is phase one for retrospective data analysis, and phase two will involve human-AI collaboration for better patient care."

This work was supported by the National Science Foundation and the National Institutes of Health. Additional co-authors, both from Ohio State, were first author Ruoqi Liu, a PhD student in computer science and engineering, and Jeffrey Caterino, MD, professor and chair of emergency medicine and chief of emergency medical services.

Liu R, Hunold KM, Caterino JM et al.
Estimating treatment effects for time-to-treatment antibiotic stewardship in sepsis.
Nat Mach Intell, 2023. doi: 10.1038/s42256-023-00638-0

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...