AI Predicts Enzyme Function Better than Leading Tools

A new artificial intelligence (AI) tool can predict the functions of enzymes based on their amino acid sequences, even when the enzymes are unstudied or poorly understood. The researchers said the AI tool, dubbed CLEAN, outperforms the leading state-of-the-art tools in accuracy, reliability and sensitivity. Better understanding of enzymes and their functions would be a boon for research in genomics, chemistry, industrial materials, medicine, pharmaceuticals and more.

"Just like ChatGPT uses data from written language to create predictive text, we are leveraging the language of proteins to predict their activity," said study leader Huimin Zhao, a University of Illinois Urbana-Champaign professor of chemical and biomolecular engineering. "Almost every researcher, when working with a new protein sequence, wants to know right away what the protein does. In addition, when making chemicals for any application - biology, medicine, industry - this tool will help researchers quickly identify the proper enzymes needed for the synthesis of chemicals and materials."

The researchers will publish their findings in the journal Science and make CLEAN accessible online March 31.

With advances in genomics, many enzymes have been identified and sequenced, but scientists have little or no information about what those enzymes do, said Zhao, a member of the Carl R. Woese Institute for Genomic Biology at Illinois.

Other computational tools try to predict enzyme functions. Typically, they attempt to assign an enzyme commission number - an ID code that indicates what kind of reaction an enzyme catalyzes - by comparing a queried sequence with a catalog of known enzymes and finding similar sequences. However, these tools don’t work as well with less-studied or uncharacterized enzymes, or with enzymes that perform multiple jobs, Zhao said.

"We are not the first one to use AI tools to predict enzyme commission numbers, but we are the first one to use this new deep-learning algorithm called contrastive learning to predict enzyme function. We find that this algorithm works much better than the AI tools that are used by others," Zhao said. "We cannot guarantee everyone's product will be correctly predicted, but we can get higher accuracy than the other two or other three methods."

The researchers verified their tool experimentally with both computational and in vitro experiments. They found that not only could the tool predict the function of previously uncharacterized enzymes, it also corrected enzymes mislabeled by the leading software and correctly identified enzymes with two or more functions.

Zhao's group is making CLEAN accessible online for other researchers seeking to characterize an enzyme or determine whether an enzyme could catalyze a desired reaction.

"We hope that this tool will be used widely by the broad research community," Zhao said. "With the web interface, researchers can just enter the sequence in a search box, like a search engine, and see the results."

Zhao said the group plans to expand the AI behind CLEAN to characterize other proteins, such as binding proteins. The team also hopes to further develop the machine-learning algorithms so that a user could search for a desired reaction and the AI would point to a proper enzyme for the job.

"There are a lot of uncharacterized binding proteins, such as receptors and transcription factors. We also want to predict their functions as well," Zhao said. "We want to predict the functions of all proteins so that we can know all the proteins a cell has and better study or engineer the whole cell for biotechnology or biomedical applications."

The National Science Foundation supported this work through the Molecule Maker Lab Institute, an AI Research Institute Zhao leads.

Tianhao Yu, Haiyang Cui, Jianan Canal Li, Yunan Luo, Guangde Jiang, Huimin Zhao.
Enzyme function prediction using contrastive learning.
Science, 2023. doi: 10.1126/science.adf2465

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...