Machine Learning Combines with Multispectral Infrared Imaging to Guide Cancer Surgery

Surgical tumor removal remains one of the most common procedures during cancer treatment, with about 45 percent of cancer patients undergoing surgical tumor removal at some point. Thanks to recent progress in imaging and biochemical technologies, surgeons are now better able to tell tumors apart from healthy tissue. Specifically, this is enabled by a technique called "fluorescence-guided surgery" (FGS).

In FGS, the patient’s tissue is stained with a dye that emits infrared light when irradiated with a special light source. The dye preferentially binds to the surface of tumor cells, so that its lightwave emissions provide information on the location and extent of the tumor. In most FGS-based approaches, the absolute intensity of the infrared emissions is used as the main criterion for discerning the pixels corresponding to tumors. However, it turns out that the intensity is sensitive to lighting conditions, the camera setup, the amount of dye used, and the time elapsed after staining. As a result, the intensity-based classification is prone to erroneous interpretation.

But what if we could instead use an intensity-independent approach to classify healthy and tumor cells? A recent study published in the Journal of Biomedical Optics and led by Dale J. Waterhouse from University College London, UK, has now proposed such an approach. The research team has developed a new technique that combines machine learning with short-wave infrared (SWIR) fluorescence imaging to detect precise boundaries of tumors.

Their method relies on capturing multispectral SWIR images of the dyed tissue rather than simply measuring the total intensity over one particular wavelength. Put simply, the team sequentially placed six different wavelength frequency (color) filters in front of their SWIR optical system and registered six measurements for each pixel. This allowed the researchers to create the spectral profiles for each type of pixel (background, healthy, or tumor). Next, they trained seven machine learning models to identify these profiles accurately in multispectral SWIR images.

The researchers trained and validated the models in vivo, using SWIR images with a lab model for an aggressive type of neuroblastoma. They also compared different normalization approaches aimed at making the classification of pixels independent of the absolute intensity such that it was governed by the pixel's spectral profile only.

Out of the seven tested models, the best performing model achieved a remarkable per-pixel classification accuracy of 97.5 percent (the accuracies for tumor, healthy, and background pixels were 97.1, 93.5, and 99.2 percent, respectively). Moreover, thanks to the normalization of the spectral profiles, the results of the model were far more robust against changes in imaging conditions. This is a particularly desirable feature for clinical applications since the ideal conditions under which new imaging technologies are usually tested are not representative of the real-world clinical environment.

Based on their findings, the team has high hopes for the proposed methodology. They anticipate that a pilot study on its implementation in human patients could help revolutionize the field of FGS. Additionally, multispectral FGS could be extended beyond the scope of the present study. For example, it could be used to remove surgical or background lights from images, remove unwanted reflections, and provide noninvasive ways for measuring lipid content and oxygen saturation. Moreover, multispectral systems enable the use of multiple fluorescent dyes with different emission characteristics simultaneously, since the signals from each dye can be untangled from the total measurements based on their spectral profile. These multiple dyes can be used to target multiple aspects of disease, providing surgeons with even greater information.

Future studies will surely unlock the full potential of multispectral FGS, opening doors to more effective surgical procedures for treating cancer and other diseases.

DJ Waterhouse et al.
Enhancing intra-operative tumor delineation with multispectral short-wave infrared fluorescence imaging and machine learning.
J. Biomed. Opt. 29(9), 094804, 2023. doi: 10.1117/1.JBO.28.9.094804

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...