AI Predicts Genetics of Cancerous Brain Tumors in under 90 Seconds

Using artificial intelligence (AI), researchers have discovered how to screen for genetic mutations in cancerous brain tumors in under 90 seconds - and possibly streamline the diagnosis and treatment of gliomas, a study suggests.

A team of neurosurgeons and engineers at Michigan Medicine, in collaboration with investigators from New York University, University of California, San Francisco and others, developed an AI-based diagnostic screening system called DeepGlioma that uses rapid imaging to analyze tumor specimens taken during an operation and detect genetic mutations more rapidly.

In a study of more than 150 patients with diffuse glioma, the most common and deadly primary brain tumor, the newly developed system identified mutations used by the World Health Organization to define molecular subgroups of the condition with an average accuracy over 90%. The results are published in Nature Medicine.

"This AI-based tool has the potential to improve the access and speed of diagnosis and care of patients with deadly brain tumors," said lead author and creator of DeepGlioma Todd Hollon, M.D., a neurosurgeon at University of Michigan Health and assistant professor of neurosurgery at U-M Medical School.

Molecular classification is increasingly central to the diagnosis and treatment of gliomas, as the benefits and risks of surgery vary among brain tumor patients depending on their genetic makeup. In fact, patients with a specific type of diffuse glioma called astrocytomas can gain an average of five years with complete tumor removal compared to other diffuse glioma subtypes.

However, access to molecular testing for diffuse glioma is limited and not uniformly available at centers that treat patients with brain tumors. When it is available, Hollon says, the turnaround time for results can take days, even weeks.

"Barriers to molecular diagnosis can result in suboptimal care for patients with brain tumors, complicating surgical decision-making and selection of chemoradiation regimens," Hollon said.

Prior to DeepGlioma, surgeons did not have a method to differentiate diffuse gliomas during surgery. An idea that started in 2019, the system combines deep neural networks with an optical imaging method known as stimulated Raman histology, which was also developed at U-M, to image brain tumor tissue in real time.

"DeepGlioma creates an avenue for accurate and more timely identification that would give providers a better chance to define treatments and predict patient prognosis," Hollon said.

Even with optimal standard-of-care treatment, patients with diffuse glioma face limited treatment options. The median survival time for patients with malignant diffuse gliomas is only 18 months.

While the development of medications to treat the tumors is essential, fewer than 10% of patients with glioma are enrolled in clinical trials, which often limit participation by molecular subgroups. Researchers hope that DeepGlioma can be a catalyst for early trial enrollment.

"Progress in the treatment of the most deadly brain tumors has been limited in the past decades- in part because it has been hard to identify the patients who would benefit most from targeted therapies," said senior author Daniel Orringer, M.D., an associate professor of neurosurgery and pathology at NYU Grossman School of Medicine, who developed stimulated Raman histology. "Rapid methods for molecular classification hold great promise for rethinking clinical trial design and bringing new therapies to patients."

Hollon T, Jiang C, Chowdury A et al.
Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging.
Nat Med, 2023. doi: 10.1038/s41591-023-02252-4

Most Popular Now

AI Identifies Anti-Aging Drug Candidates…

A new publication in the May issue of Nature Aging by researchers from Integrated Biosciences, a biotechnology company combining synthetic biology and machine learning to target aging, demonstrates the power...

AI could Improve Heart Attack Diagnosis …

An algorithm developed using artificial intelligence (AI) could soon be used by doctors to diagnose heart attacks with better speed and accuracy than ever before, according to new research from...

AI Predicts Future Pancreatic Cancer

An artificial intelligence (AI) tool has successfully identified people at the highest risk for pancreatic cancer up to three years before diagnosis using solely the patients’ medical records, according to...

New Algorithm can Predict Diabetic Kidne…

Researchers from Sanford Burnham Prebys and the Chinese University of Hong Kong have developed a computational approach to predict whether a person with type 2 diabetes will develop kidney disease...

AI Voice Coach Shows Promise in Depressi…

Artificial intelligence (AI) could be a useful tool in mental health treatment, according to the results of a new pilot study led by University of Illinois Chicago researchers. The study...

AI could Run a Million Microbial Experim…

An artificial intelligence (AI) system enables robots to conduct autonomous scientific experiments - as many as 10,000 per day - potentially driving a drastic leap forward in the pace of...

Scientists develop AI tool to predict Pa…

Scientists from UNSW Sydney with collaborators at Boston University have developed a tool that shows early promise in detecting Parkinson’s disease years before the first symptoms start appearing. In research published...

Better than Humans: AI in Intensive Care…

In the future, artificial intelligence (AI) will play an important role in medicine. In diagnostics, successful tests have already been performed: for example, the computer can learn to categorise images...

Could Online Gaming Social Networks Have…

For millions of Americans playing some type of video game is a daily occurrence. Games can be a welcome form of entertainment and relaxation for many, and the internet can...

ChatGPT Passes Radiology Board Exam

The latest version of ChatGPT passed a radiology board-style exam, highlighting the potential of large language models but also revealing limitations that hinder reliability, according to two new research studies...

Siemens Healthineers Opens State-of-the-…

Siemens Healthineers has opened its new Education & Development Center (EDC) in Erlangen. The open-plan building offers space for the currently 240 trainees and integrated degree program participants in Erlangen...

Siemens Healthineers Invests 80 Million …

Siemens Healthineers is building a new factory in Forchheim for the cultivation of crystals for semiconductor production. The total investment amounts to 80 million euros. The new factory is expected...