AI can Help Optimize CT Scan X-Ray Radiation Dose

Computed tomography (CT) is one of the most powerful and well-established diagnostic tools available to modern medicine. An increasing number of people have been opting for CT scans, raising concerns about the amount of X-ray radiation that patients are exposed to. Ideally, a patient is exposed to minimum radiation levels during treatments or diagnostic procedures, while still receiving the expected benefit.

In practice, this is known as the ALARA principle, which stands for "As Low As Reasonably Achievable." However, this principle results in a trade-off because CT image quality decreases with a decrease in radiation power. Thus, medical staff usually aim to strike a balance between a patient's exposure to X-rays and obtaining good quality CT images to avoid misdiagnosis.

This balance can be achieved through an optimization strategy, in which healthcare professionals, primarily radiologists, observe real images generated by the tomographer and try to identify features, such as tumors or abnormal tissue. Following this, a specialist employs statistical methods to calculate the optimal radiation dose and configuration of the tomographer. This procedure can be generalized by employing reference CT images obtained by scanning specifically designed phantoms containing inserts of different sizes and contrasts, which represent standardized abnormalities. Nevertheless, such manual image analyses are very time-consuming.

To address this issue, a team of researchers from Italy led by Dr. Sandra Doria and members of the Physics Department at the University of Florence, in collaboration with radiologists and medical physicists from Florence Hospital, explored the possibility of automating this process using artificial intelligence (AI).

As reported in Journal of Medical Imaging (JMI), the team created and trained an algorithm - a "model observer" - based on convolutional neural networks (CNNs), which could analyze the standardized abnormalities in CT images just as well as a professional.

To do so, the team had to generate enough training and testing data for the model. Thirty healthcare professionals visually examined 1000 CT images, each consisting in a phantom that mimics human tissue. Aptly termed 2phantom," this material contained cylindrical inserts of different diameters and contrasts. The observers were asked to identify if and where the inserted object appeared in each of the images and state how confident they were in their assessment. This resulted in a dataset of 30,000 labeled CT images taken using different tomographic reconstruction configurations, accurately reflecting human interpretation.

Next, the team implemented two AI models based on different architectures - UNet and MobileNetV2. They modified the base design of these architectures to enable them to perform both classification ("Is there an unusual object in the CT image?") and localization ("Where is the unusual object?"). Then, they trained and tested the models using images from the dataset.

Through statistical analyses, the research team evaluated various performance metrics to verify that the model observers could accurately emulate how a human would assess the CT images of the phantom. "Our results were very promising, as both trained models performed remarkably well and achieved an absolute percentage error of less than 5 percent. This indicated that the models could identify the object inserted in the phantom with similar accuracy and confidence as a human professional, for almost all reconstruction configurations and abnormalities sizes and contrasts," remarked Doria, while discussing their findings.

Doria and her team believe that with additional efforts, their model could become a viable strategy to automatically assess CT image quality. She further adds, "Our CNN-based model observers could greatly simplify the process of optimizing the radiation dose used in CT protocols, thereby minimizing health risks to the patient, and help avoid the time-consuming limitations of medical evaluations."

Doria expressed confidence that the team will succeed in applying their AI model observers on a larger scale, making CT evaluations faster and safer than ever before.

Valeri F, Bartolucci M, Cantoni E, Carpi R, Cisbani E, Cupparo I, Doria S, Gori C, Grigioni M, Lasagni L, Marconi A, Mazzoni LN, Miele V, Pradella S, Risaliti G, Sanguineti V, Sona D, Vannucchi L, Taddeucci A.
UNet and MobileNet CNN-based model observers for CT protocol optimization: comparative performance evaluation by means of phantom CT images.
J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S11904. doi: 10.1117/1.JMI.10.S1.S11904

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...