AI Approach may Help Detect Alzheimer's Disease from Routine Brain Imaging Tests

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently developed an accurate method for detection that relies on routinely collected clinical brain images. The advance could lead to more accurate diagnoses.

For the study, which is published in PLOS ONE, Matthew Leming, PhD, a research fellow at MGH’s Center for Systems Biology and an investigator at the Massachusetts Alzheimer’s Disease Research Center, and his colleagues used deep learning - a type of machine learning and artificial intelligence that uses large amounts of data and complex algorithms to train models.

In this case, the scientists developed a model for Alzheimer's disease detection based on data from brain magnetic resonance images (MRIs) collected from patients with and without Alzheimer's disease who were seen at MGH before 2019.

Next, the group tested the model across five datasets - MGH post-2019, Brigham and Women's Hospital pre- and post-2019, and outside systems pre- and post-2019 - to see if it could accurately detect Alzheimer's disease based on real-world clinical data, regardless of hospital and time.

Overall, the research involved 11,103 images from 2,348 patients at risk for Alzheimer’s disease and 26,892 images from 8,456 patients without Alzheimer’s disease. Across all five datasets, the model detected Alzheimer's disease risk with 90.2% accuracy.

Among the main innovations of the work were its ability to detect Alzheimer's disease regardless of other variables, such as age. "Alzheimer's disease typically occurs in older adults, and so deep learning models often have difficulty in detecting the rarer early-onset cases," says Leming. "We addressed this by making the deep learning model 'blind' to features of the brain that it finds to be overly associated with the patient's listed age."

Leming notes that another common challenge in disease detection, especially in real-world settings, is dealing with data that are very different from the training set. For instance, a deep learning model trained on MRIs from a scanner manufactured by General Electric may fail to recognize MRIs collected on a scanner manufactured by Siemens.

The model used an uncertainty metric to determine whether patient data were too different from what it had been trained on for it to be able to make a successful prediction.

"This is one of the only studies that used routinely collected brain MRIs to attempt to detect dementia. While a large number of deep learning studies for Alzheimer's detection from brain MRIs have been conducted, this study made substantial steps towards actually performing this in real-world clinical settings as opposed to perfect laboratory settings," said Leming. "Our results - with cross-site, cross-time, and cross-population generalizability - make a strong case for clinical use of this diagnostic technology."

This work was supported by the National Institutes of Health and by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea, managed through a subcontract to MGH.

Leming M, Das S, Im H.
Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham.
PLoS One. 2023 Mar 2;18(3):e0277572. doi: 10.1371/journal.pone.0277572

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...