AI Approach may Help Detect Alzheimer's Disease from Routine Brain Imaging Tests

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently developed an accurate method for detection that relies on routinely collected clinical brain images. The advance could lead to more accurate diagnoses.

For the study, which is published in PLOS ONE, Matthew Leming, PhD, a research fellow at MGH’s Center for Systems Biology and an investigator at the Massachusetts Alzheimer’s Disease Research Center, and his colleagues used deep learning - a type of machine learning and artificial intelligence that uses large amounts of data and complex algorithms to train models.

In this case, the scientists developed a model for Alzheimer's disease detection based on data from brain magnetic resonance images (MRIs) collected from patients with and without Alzheimer's disease who were seen at MGH before 2019.

Next, the group tested the model across five datasets - MGH post-2019, Brigham and Women's Hospital pre- and post-2019, and outside systems pre- and post-2019 - to see if it could accurately detect Alzheimer's disease based on real-world clinical data, regardless of hospital and time.

Overall, the research involved 11,103 images from 2,348 patients at risk for Alzheimer’s disease and 26,892 images from 8,456 patients without Alzheimer’s disease. Across all five datasets, the model detected Alzheimer's disease risk with 90.2% accuracy.

Among the main innovations of the work were its ability to detect Alzheimer's disease regardless of other variables, such as age. "Alzheimer's disease typically occurs in older adults, and so deep learning models often have difficulty in detecting the rarer early-onset cases," says Leming. "We addressed this by making the deep learning model 'blind' to features of the brain that it finds to be overly associated with the patient's listed age."

Leming notes that another common challenge in disease detection, especially in real-world settings, is dealing with data that are very different from the training set. For instance, a deep learning model trained on MRIs from a scanner manufactured by General Electric may fail to recognize MRIs collected on a scanner manufactured by Siemens.

The model used an uncertainty metric to determine whether patient data were too different from what it had been trained on for it to be able to make a successful prediction.

"This is one of the only studies that used routinely collected brain MRIs to attempt to detect dementia. While a large number of deep learning studies for Alzheimer's detection from brain MRIs have been conducted, this study made substantial steps towards actually performing this in real-world clinical settings as opposed to perfect laboratory settings," said Leming. "Our results - with cross-site, cross-time, and cross-population generalizability - make a strong case for clinical use of this diagnostic technology."

This work was supported by the National Institutes of Health and by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea, managed through a subcontract to MGH.

Leming M, Das S, Im H.
Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham.
PLoS One. 2023 Mar 2;18(3):e0277572. doi: 10.1371/journal.pone.0277572

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...