AI Approach may Help Detect Alzheimer's Disease from Routine Brain Imaging Tests

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently developed an accurate method for detection that relies on routinely collected clinical brain images. The advance could lead to more accurate diagnoses.

For the study, which is published in PLOS ONE, Matthew Leming, PhD, a research fellow at MGH’s Center for Systems Biology and an investigator at the Massachusetts Alzheimer’s Disease Research Center, and his colleagues used deep learning - a type of machine learning and artificial intelligence that uses large amounts of data and complex algorithms to train models.

In this case, the scientists developed a model for Alzheimer's disease detection based on data from brain magnetic resonance images (MRIs) collected from patients with and without Alzheimer's disease who were seen at MGH before 2019.

Next, the group tested the model across five datasets - MGH post-2019, Brigham and Women's Hospital pre- and post-2019, and outside systems pre- and post-2019 - to see if it could accurately detect Alzheimer's disease based on real-world clinical data, regardless of hospital and time.

Overall, the research involved 11,103 images from 2,348 patients at risk for Alzheimer’s disease and 26,892 images from 8,456 patients without Alzheimer’s disease. Across all five datasets, the model detected Alzheimer's disease risk with 90.2% accuracy.

Among the main innovations of the work were its ability to detect Alzheimer's disease regardless of other variables, such as age. "Alzheimer's disease typically occurs in older adults, and so deep learning models often have difficulty in detecting the rarer early-onset cases," says Leming. "We addressed this by making the deep learning model 'blind' to features of the brain that it finds to be overly associated with the patient's listed age."

Leming notes that another common challenge in disease detection, especially in real-world settings, is dealing with data that are very different from the training set. For instance, a deep learning model trained on MRIs from a scanner manufactured by General Electric may fail to recognize MRIs collected on a scanner manufactured by Siemens.

The model used an uncertainty metric to determine whether patient data were too different from what it had been trained on for it to be able to make a successful prediction.

"This is one of the only studies that used routinely collected brain MRIs to attempt to detect dementia. While a large number of deep learning studies for Alzheimer's detection from brain MRIs have been conducted, this study made substantial steps towards actually performing this in real-world clinical settings as opposed to perfect laboratory settings," said Leming. "Our results - with cross-site, cross-time, and cross-population generalizability - make a strong case for clinical use of this diagnostic technology."

This work was supported by the National Institutes of Health and by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea, managed through a subcontract to MGH.

Leming M, Das S, Im H.
Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham.
PLoS One. 2023 Mar 2;18(3):e0277572. doi: 10.1371/journal.pone.0277572

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...