AI Tool Developed to Predict Risk of Lung Cancer

Lung cancer is the leading cause of cancer death in the United States and around the world. Low-dose chest computed tomography (LDCT) is recommended to screen people between 50 and 80 years of age with a significant history of smoking, or who currently smoke. Lung cancer screening with LDCT has been shown to reduce death from lung cancer by up to 24 percent.

But as rates of lung cancer climb among non-smokers, new strategies are needed to screen and accurately predict lung cancer risk across a wider population. A study led by investigators from the Mass General Cancer Center, a member of Mass General Brigham, in collaboration with researchers at the Massachusetts Institute of Technology (MIT), developed and tested an artificial intelligence tool known as Sybil. Based on analyses of LDCT scans from patients in the U.S. and Taiwan, Sybil accurately predicted the risk of lung cancer for individuals with or without a significant smoking history. Results are published in the Journal of Clinical Oncology.

"Lung cancer rates continue to rise among people who have never smoked or who haven’t smoked in years, suggesting that there are many risk factors contributing to lung cancer risk, some of which are currently unknown," said corresponding author Lecia Sequist, MD, MPH, director of the Center for Innovation in Early Cancer Detection and a lung cancer medical oncologist at the Mass General Cancer Center. "Instead of assessing individual environmental or genetic risk factors, we’ve developed a tool that can use images to look at collective biology and make predictions about cancer risk."

The U.S. Preventive Service Task Force recommends annual LDCTs for people over the age of 50 with a history of 20 pack-years, who either currently smoke or have quit smoking within the last 15 years. But less than 10 percent of eligible patients are screened annually. To help improve the efficiency of lung cancer screening and provide individualized assessments, Sequist and colleagues at the Mass General Cancer Center teamed up with investigators from the Jameel Clinic at MIT. Using data from the National Lung Screening Trial (NLST), the team developed Sybil, a deep-learning model that analyzes scans and predicts lung cancer risk for the next one to six years.

"Sybil requires only one LDCT and does not depend on clinical data or radiologist annotations," said co-author Florian Fintelmann, MD, of the Department of Radiology, Division of Thoracic Imaging & Intervention at Massachusetts General Hospital. "It was designed to run in real-time in the background of a standard radiology reading station which enables point-of care clinical decision support."

The team validated Sybil using three independent data sets - a set of scans from more than 6,000 NLST participants who Sybil had not previously seen; 8,821 LDCTs from Massachusetts General Hospital (MGH); and 12,280 LDCTs from Chang Gung Memorial Hospital in Taiwan. The latter set of scans included people with a range of smoking history, including those who never smoked.

Sybil was able to accurately predict risk of lung cancer across these sets. The researchers determined how accurate Sybil was using Area Under the Curve (AUC), a measure of how well a test can distinguish between disease and normal samples and in which 1.0 is a perfect score. Sybil predicted cancer within one year with AUCs of 0.92 for the additional NLST participants, 0.86 for the MGH dataset, and 0.94 for the dataset from Taiwan. The program predicted lung cancer within six years with AUCs of 0.75, 0.81, and 0.80, respectively, for the three datasets.

"Sybil can look at an image and predict the risk of a patient developing lung cancer within six years," said co-author and Jameel Clinic faculty lead Regina Barzilay, PhD, a member of the Koch Institute for Integrative Cancer Research. "I am excited about translational efforts led by the MGH team that are aiming to change outcomes for patients who would otherwise develop advanced disease."

The researchers note that this is a retrospective study, and prospective studies that follow patients going forward are needed to validate Sybil. In addition, the U.S. participants in the study were overwhelmingly white (92 percent), and future studies will be needed to determine if Sybil can accurately predict lung cancer among diverse populations.

Sequist and colleagues will be opening a prospective clinical trial to put Sybil to test in the real world and understand how it complements the work of radiologists. The code has also been made publicly available.

"In our study, Sybil was able to detect patterns of risk from the LDCT that were not visible to the human eye," said Sequist. "We're excited to further test this program to see if it can add information that helps radiologists with diagnostics and sets us on a path to personalize screening for patients."

Mikhael PG, Wohlwend J, Yala A, Karstens L, Xiang J, Takigami AK, Bourgouin PP, Chan P, Mrah S, Amayri W, Juan YH, Yang CT, Wan YL, Lin G, Sequist LV, Fintelmann FJ, Barzilay R.
Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography.
J Clin Oncol. 2023 Jan 12:JCO2201345. doi: 10.1200/JCO.22.01345

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...