Machine Learning-Derived Model could Lead to Better Disease Screening, Diagnostics, and Management

Using machine learning and clinical data from electronic health records, researchers at the Icahn School of Medicine at Mount Sinai in New York constructed an in silico, or computer-derived, marker for coronary artery disease (CAD) to better measure clinically important characterizations of the disease.

The findings, published online on December 20 in The Lancet, may lead to more targeted diagnosis and better disease management of CAD, the most common type of heart disease and a leading cause of death worldwide. The study is the first known research to map characteristics of CAD on a spectrum. Previous studies have focused only on whether or not a patient has CAD.

CAD and other common conditions exist on a spectrum of disease; each individual’s mix of risk factors and disease processes determines where they fall on the spectrum. However, most such studies break this disease spectrum into rigid classes of case (patient has disease) or control (patient does not have disease). This may result in missed diagnoses, inappropriate management, and poorer clinical outcomes, say the investigators.

"The information gained from this non-invasive staging of disease could empower clinicians by more accurately assessing patient status and, therefore, inform the development of more targeted treatment plans," says Ron Do, PhD, senior study author and the Charles Bronfman Professor in Personalized Medicine at the Icahn School of Medicine at Mount Sinai.

"Our model delineates coronary artery disease patient populations on a disease spectrum; this could provide more insights into disease progression and how those affected will respond to treatment. Having the ability to reveal distinct gradations of disease risk, atherosclerosis, and survival, for example, which may otherwise be missed with a conventional binary framework, is critical."

In the retrospective study, the researchers trained the machine learning model, named in silico score for coronary artery disease or ISCAD, to accurately measure CAD on a spectrum using more than 80,000 electronic health records from two large health system-based biobanks, the BioMe Biobank at the Mount Sinai Health System and the UK Biobank.

The model, which the researchers termed a “digital marker,” incorporated hundreds of different clinical features from the electronic health record, including vital signs, laboratory test results, medications, symptoms, and diagnoses, and compared it to both an existing clinical score for CAD, which uses only a small number of predetermined features, and a genetic score for CAD.

The 95,935 participants included participants of African, Hispanic/Latino, Asian, and European ethnicities, as well as a large share of women. Most clinical and machine learning studies on CAD have focused on white European ethnicity.

The investigators found that the probabilities from the model accurately tracked the degree of narrowing of coronary arteries (coronary stenosis), mortality, and complications such as heart attack.

"Machine learning models like this could also benefit the health care industry at large by designing clinical trials based on appropriate patient stratification. It may also lead to more efficient data-driven individualized therapeutic strategies," says lead author Iain S. Forrest, PhD, a postdoctoral fellow in the lab of Dr. Do and an MD/PhD student in the Medical Scientist Training Program at Icahn Mount Sinai. "Despite this progress, it is important to remember that physician and procedure-based diagnosis and management of coronary artery disease are not replaced by artificial intelligence, but rather potentially supported by ISCAD as another powerful tool in the clinician’s toolbox."

Next, the investigators envision conducting a prospective large-scale study to further validate the clinical utility and actionability of ISCAD, including in other populations. They also plan to assess a more portable version of the model that can be used universally across health systems.

Iain S Forrest, Ben O Petrazzini, Áine Duffy, Joshua K Park, Carla Marquez-Luna, Daniel M Jordan, Ghislain Rocheleau, Judy H Cho, Robert S Rosenson, Jagat Narula, Girish N Nadkarni, Ron Do.
Machine learning-based marker for coronary artery disease: derivation and validation in two longitudinal cohorts.
The Lancet, 2022. doi: 10.1016/S0140-6736(22)02079-7

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...