Finding the Right AI for You

The human genome is three billion letters of code, and each person has millions of variations. While no human can realistically sift through all that code, computers can. Artificial intelligence (AI) programs can find patterns in the genome related to disease much faster than humans can. They also spot things that humans miss. Someday, AI-powered genome readers may even be able to predict the incidence of diseases from cancer to the common cold. Unfortunately, AI’s recent popularity surge has led to a bottleneck in innovation.

"It's like the Wild West right now. Everyone's just doing whatever the hell they want," says Cold Spring Harbor Laboratory (CSHL) Assistant Professor Peter Koo. Just like Frankenstein's monster was a mix of different parts, AI researchers are constantly building new algorithms from various sources. And it's difficult to judge whether their creations will be good or bad. After all, how can scientists judge "good" and "bad" when dealing with computations that are beyond human capabilities?

That's where GOPHER, the Koo lab's newest invention, comes in. GOPHER (short for GenOmic Profile-model compreHensive EvaluatoR) is a new method that helps researchers identify the most efficient AI programs to analyze the genome. "We created a framework where you can compare the algorithms more systematically," explains Ziqi Tang, a graduate student in Koo's laboratory.

GOPHER judges AI programs on several criteria: how well they learn the biology of our genome, how accurately they predict important patterns and features, their ability to handle background noise, and how interpretable their decisions are. "AI are these powerful algorithms that are solving questions for us," says Tang. But, she notes: "One of the major issues with them is that we don’t know how they came up with these answers."

GOPHER helped Koo and his team dig up the parts of AI algorithms that drive reliability, performance, and accuracy. The findings help define the key building blocks for constructing the most efficient AI algorithms going forward. "We hope this will help people in the future who are new to the field," says Shushan Toneyan, another graduate student at the Koo lab.

Imagine feeling unwell and being able to determine exactly what’s wrong at the push of a button. AI could someday turn this science-fiction trope into a feature of every doctor's office. Similar to video-streaming algorithms that learn users' preferences based on their viewing history, AI programs may identify unique features of our genome that lead to individualized medicine and treatments. The Koo team hopes GOPHER will help optimize such AI algorithms so that we can trust they’re learning the right things for the right reasons. Toneyan says: "If the algorithm is making predictions for the wrong reasons, they're not going to be helpful."

Toneyan, S., Tang, Z. & Koo, P.K.
Evaluating deep learning for predicting epigenomic profiles.
Nat Mach Intell, 2022. doi: 10.1038/s42256-022-00570-9

Most Popular Now

Northern Lincolnshire and Goole NHS Foun…

Northern Lincolnshire and Goole NHS Foundation Trust (NLAG) has launched new NHS App features to transform the way patients access and manage their appointments within the NHS. The programme, known...

Genomics England Deploys Sectra Imaging …

Genomics England has completed installation of an enterprise imaging system that will help to support a world-pioneering initiative for cancer research. The programme is linking whole genome sequencing, pathology and...

Orion Health Strengthens French Business…

Orion Health is strengthening its presence in France with the appointment of digital health industry heavyweight, Tristan Debove, to lead its operations. Tristan Debove has more than 25 years of experience...

AI Approach may Help Detect Alzheimer's …

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently...

AI Predicts Cancer Patient Survival by R…

A team of researchers from the University of British Columbia and BC Cancer have developed an artificial intelligence (AI) model that predicts cancer patient survival more accurately and with more...

Virtual Reality Games can be Used as a T…

Virtual reality gamers (VR game) who finished it faster than their fellow gamers also have higher levels of general intelligence and processing capacity. This was the result of a study...

Will Future Computers Run on Human Brain…

A "biocomputer" powered by human brain cells could be developed within our lifetime, according to Johns Hopkins University researchers who expect such technology to exponentially expand the capabilities of modern...

Detecting Anaemia Earlier in Children Us…

Researchers at UCL and University of Ghana have successfully predicted whether children have anaemia using only a set of smartphone images. The study, published in PLOS ONE, brought together researchers and...

AI can Help Optimize CT Scan X-Ray Radia…

Computed tomography (CT) is one of the most powerful and well-established diagnostic tools available to modern medicine. An increasing number of people have been opting for CT scans, raising concerns...

Study Reveals Smartphone Spyware Apps ar…

Smartphone spyware apps that allow people to spy on each other are not only hard to notice and detect, they also will easily leak the sensitive personal information they...

Orion Health Appoints Mark Hindle as Vic…

Orion Health has appointed Mark Hindle as its new vice president for the UK and Ireland. Mark has joined the leading supplier of digital tools to improve healthcare experience from...