Finding the Right AI for You

The human genome is three billion letters of code, and each person has millions of variations. While no human can realistically sift through all that code, computers can. Artificial intelligence (AI) programs can find patterns in the genome related to disease much faster than humans can. They also spot things that humans miss. Someday, AI-powered genome readers may even be able to predict the incidence of diseases from cancer to the common cold. Unfortunately, AI’s recent popularity surge has led to a bottleneck in innovation.

"It's like the Wild West right now. Everyone's just doing whatever the hell they want," says Cold Spring Harbor Laboratory (CSHL) Assistant Professor Peter Koo. Just like Frankenstein's monster was a mix of different parts, AI researchers are constantly building new algorithms from various sources. And it's difficult to judge whether their creations will be good or bad. After all, how can scientists judge "good" and "bad" when dealing with computations that are beyond human capabilities?

That's where GOPHER, the Koo lab's newest invention, comes in. GOPHER (short for GenOmic Profile-model compreHensive EvaluatoR) is a new method that helps researchers identify the most efficient AI programs to analyze the genome. "We created a framework where you can compare the algorithms more systematically," explains Ziqi Tang, a graduate student in Koo's laboratory.

GOPHER judges AI programs on several criteria: how well they learn the biology of our genome, how accurately they predict important patterns and features, their ability to handle background noise, and how interpretable their decisions are. "AI are these powerful algorithms that are solving questions for us," says Tang. But, she notes: "One of the major issues with them is that we don’t know how they came up with these answers."

GOPHER helped Koo and his team dig up the parts of AI algorithms that drive reliability, performance, and accuracy. The findings help define the key building blocks for constructing the most efficient AI algorithms going forward. "We hope this will help people in the future who are new to the field," says Shushan Toneyan, another graduate student at the Koo lab.

Imagine feeling unwell and being able to determine exactly what’s wrong at the push of a button. AI could someday turn this science-fiction trope into a feature of every doctor's office. Similar to video-streaming algorithms that learn users' preferences based on their viewing history, AI programs may identify unique features of our genome that lead to individualized medicine and treatments. The Koo team hopes GOPHER will help optimize such AI algorithms so that we can trust they’re learning the right things for the right reasons. Toneyan says: "If the algorithm is making predictions for the wrong reasons, they're not going to be helpful."

Toneyan, S., Tang, Z. & Koo, P.K.
Evaluating deep learning for predicting epigenomic profiles.
Nat Mach Intell, 2022. doi: 10.1038/s42256-022-00570-9

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...