A New AI Model can Accurately Predict Human Response to Novel Drug Compounds

The journey between identifying a potential therapeutic compound and Food and Drug Administration approval of a new drug can take well over a decade and cost upwards of a billion dollars. A research team at the CUNY Graduate Center has created an artificial intelligence model that could significantly improve the accuracy and reduce the time and cost of the drug development process. Described in a newly published paper in Nature Machine Intelligence, the new model, called CODE-AE, can screen novel drug compounds to accurately predict efficacy in humans. In tests, it was also able to theoretically identify personalized drugs for over 9,000 patients that could better treat their conditions. Researchers expect the technique to significantly accelerate drug discovery and precision medicine.

Accurate and robust prediction of patient-specific responses to a new chemical compound is critical to discover safe and effective therapeutics and select an existing drug for a specific patient. However, it is unethical and infeasible to do early efficacy testing of a drug in humans directly. Cell or tissue models are often used as a surrogate of the human body to evaluate the therapeutic effect of a drug molecule. Unfortunately, the drug effect in a disease model often does not correlate with the drug efficacy and toxicity in human patients. This knowledge gap is a major factor in the high costs and low productivity rates of drug discovery.

"Our new machine learning model can address the translational challenge from disease models to humans," said Lei Xie, a professor of computer science, biology and biochemistry at the CUNY Graduate Center and Hunter College and the paper's senior author. "CODE-AE uses biology-inspired design and takes advantage of several recent advances in machine learning. For example, one of its components uses similar techniques in Deepfake image generation."

The new model can provide a workaround to the problem of having sufficient patient data to train a generalized machine learning model, said You Wu, a CUNY Graduate Center Ph.D. student and co-author of the paper. "Although many methods have been developed to utilize cell-line screens for predicting clinical responses, their performances are unreliable due to data incongruity and discrepancies,” Wu said. “CODE-AE can extract intrinsic biological signals masked by noise and confounding factors and effectively alleviated the data-discrepancy problem."

As a result, CODE-AE significantly improves accuracy and robustness over state-of-the-art methods in predicting patient-specific drug responses purely from cell-line compound screens.

The research team's next challenge in advancing the technology's use in drug discovery is developing a way for CODE-AE to reliably predict the effect of a new drug's concentration and metabolization in human bodies. The researchers also noted that the AI model could potentially be tweaked to accurately predict human side effects to drugs.

This work was supported by the National Institute of General Medical Sciences and the National Institute on Aging.

He D, Liu Q, Wu Y et al.
A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening.
Nat Mach Intell, 2022. doi: 10.1038/s42256-022-00541-0

Most Popular Now

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...