Proposals to the eHealth Standardization Bodies

Proposals to the eHealth Standardization Bodies represents a novel dissemination approach of the RIDE Project achievements and in special a web based representation of the Deliverable D.5.3.1 – Proposals to Standardization Bodies.

eHealth Ontology Project has launched a Section which collects 22 Recommendations to the eHealth Standardization Bodies, all interested eHealth professional are welcome to rate and to comment all published Recommendations.

The main focus of this section is to provide recommendations and proposals for actions and initiatives in the area of standardization to enable health policies and strategies to be efficiently realised at local, regional, national and international levels. In particular, have been investigated extensions in the existing standardization efforts which should be recommended to Standards Development Organisations (SDOs), such as CEN TC 251, CEN/ISSS, HL7, ISO or IEEE.

Health informatics standards are essential to achieve the goals of eHealth in Europe for:

  • interoperability between systems and patient information exchange between health organisations;
  • market efficiency by providing increased understanding between all players in that market through a common technical framework and terminology for eHealth application development, procurement and implementation;
  • meeting non-functional requirements to ensure safety, security and legal requirements e.g. protecting the privacy of the citizens;
  • establishing a representative set of multinational interoperable, coordinated and open eHealth services based on a common business and service architecture;
  • managing eHealth services.

For further information, please visit:
http://www.ehealthserver.com/ontology

Related news articles:

About RIDE Project
RIDE is a roadmap project for interoperability of eHealth systems leading to recommendations for actions and to preparatory actions at the European level. This roadmap will prepare the ground for future actions as envisioned in the action plan of the eHealth Communication COM 356 by coordinating various efforts on eHealth interoperability in member states and the associated states. Since it is not realistic to expect to have a single universally accepted clinical data model that will be adhered to all over the Europe and that the clinical practice, terminology systems and EHR systems are all a long way from such a complete harmonization; the RIDE project address the interoperability of eHealth systems with special emphasis on semantic interoperability. For further information please visit http://www.srdc.metu.edu.tr/webpage/projects/ride/

About eHealth Ontology Project
The eHealth Ontology Project is dedicated to provide news and information about the eHealth Ontology related core achievements, research activities, practical approaches, and other realisations. For further information, please visit http://www.ehealthserver.com/ontology

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...