AI + ECG Heart Trace can Accurately Predict Diabetes and pre-Diabetes

An artificial intelligence (AI) algorithm, derived from the features of individual heartbeats recorded on an ECG (electrocardiogram), can accurately predict diabetes and pre-diabetes, suggests preliminary research published in the online journal BMJ Innovations.

If validated in larger studies, the approach could be used to screen for the disease in low resource settings, say the researchers.

An estimated 463 million adults around the world had diabetes in 2019. And picking up the disease in its early stages is key to preventing subsequent serious health problems. But diagnosis relies heavily on the measurement of blood glucose.

This is not only invasive but also challenging to roll out as a mass screening test in low resource settings, point out the researchers.

Structural and functional changes in the cardiovascular system occur early on even before indicative blood glucose changes, and these show up on an ECG heart trace.

The researchers therefore wanted to see if machine learning (AI) techniques could be used to harness the screening potential of ECG to predict pre-diabetes and type 2 diabetes in people at high risk of the disease.

They drew on participants in the Diabetes in Sindhi Families in Nagpur (DISFIN) study, which looked at the genetic basis of type 2 diabetes and other metabolic traits in Sindhi families at high risk of the disease in Nagpur, India.

Families with at least one known case of type 2 diabetes and living in Nagpur, which has a high density of Sindhi people, were enrolled in the study.

Participants provided details of their personal and family medical histories, their normal diet, and underwent a full range of blood tests and clinical assessments. Their average age was 48 and 61% of them were women.

Pre-diabetes and diabetes were identified from the diagnostic criteria specified by the American Diabetes Association.

The prevalence of both type 2 diabetes and pre-diabetes was high: around 30% and 14%, respectively. And the prevalence of insulin resistance was also high - 35% - as was the prevalence of other influential coexisting conditions - high blood pressure (51%), obesity (around 40%), and disordered blood fats (36%).

A standard 12-lead ECG heart trace lasting 10 seconds was done for each of the 1262 participants included. And 100 unique structural and functional features for each lead were combined for each of the 10,461 single heartbeats recorded to generate a predictive algorithm (DiaBeats).

Based on the shape and size of individual heartbeats, the DiaBeats algorithm quickly detected diabetes and prediabetes with an overall accuracy of 97% and a precision of 97%, irrespective of influential factors, such as age, gender, and coexisting metabolic disorders.

Important ECG features consistently matched the known biological triggers underpinning cardiac changes that are typical of diabetes and pre-diabetes.

The researchers acknowledge that the study participants were all at high risk of diabetes and other metabolic disorders, so unlikely to represent the general population. And DiaBeats was slightly less accurate in those taking prescription meds for diabetes, high blood pressure, high cholesterol, etc.

Nor were data available for those who became pre-diabetic or diabetic, making it impossible to determine the impact of early screening.

"In theory, our study provides a relatively inexpensive, non-invasive, and accurate alternative [to current diagnostic methods] which can be used as a gatekeeper to effectively detect diabetes and pre-diabetes early in its course," they conclude.

"Nevertheless, adoption of this algorithm into routine practice will need robust validation on external, independent datasets," they caution.

Kulkarni AR, Patel AA, Pipal KV, et al.
Machine-learning algorithm to non-invasively detect diabetes and pre-diabetes from electrocardiogram.
BMJ Innovations, 2022. doi: 10.1136/bmjinnov-2021-000759

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...