Big Data in the ER

Scientists from the Department of Traumatology and Acute Critical Medicine at the Osaka University Graduate School of Medicine developed an AI algorithm to predict the risk of mortality for patients suffering a major injury. Using the Japan Trauma Data Bank for the years 2013 to 2017, they were able to obtain records for over 70,000 patients who had experienced blunt-force trauma, which allowed the researchers to identify critical factors that could guide treatment strategies more precisely.

Trauma doctors in emergency rooms must make life-and-death decisions quickly, and often with very limited information. Part of the challenge is that the factors that would indicate the likelihood of adverse clinical outcomes are not completely understood, and sometimes the body's own inflammatory and blood clotting changes in response to major injuries do more harm than good. A more rigorous and comprehensive approach to trauma care is clearly needed.

Now, a team of researchers from the Osaka University Graduate School of Medicine have analyzed a database of all trauma cases recorded in Japan using machine learning algorithms. This included patient information, such as age and type of injury. In addition, mass spectrometry and proteome analysis were performed on serum from trauma patients at the hospital in Osaka. This provided more specific information on blood markers that could indicate an increase or decrease of specific proteins. "Our study has important clinical implications. It can help identify the patients at highest risk who may benefit most from early intervention," says first author Jotaro Tachino.

The team used a hierarchical clustering analysis on the data and found that 11 variables were most correlated with an increased mortality rate, which included the type and severity of the injury. In addition, they saw that patients at highest risk often exhibited excessive inflammation or even an acute inflammatory response. They also found protein markers that signaled downregulated coagulation strongly associated with negative outcomes.

"The method that we used for this project can also be extended to the development of new treatment strategies and therapeutic agents for other medical conditions for which large datasets are available," says senior author Hiroshi Ogura. This work may greatly optimize the allocation of scarce ER healthcare resources to save more people. The team also hopes that this research might help shed light on ways to help calm the inflammation pathways that can run out of control in the wake of traumatic injuries.

Tachino J, Matsumoto H, Sugihara F, Seno S, Okuzaki D, Kitamura T, Komukai S, Kido Y, Kojima T, Togami Y, Katayama Y, Nakagawa Y, Ogura H.
Development of clinical phenotypes and biological profiles via proteomic analysis of trauma patients.
Crit Care. 2022 Aug 6;26(1):241. doi: 10.1186/s13054-022-04103-z

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...