AI Enables Non-Invasive, Accurate Screening for Down Syndrome in the First Trimester

Down Syndrome, also known as Trisomy 21, is the most common chromosomal abnormality causing developmental delay and intellectual disability and can be identified in utero. Many pregnant women seek to determine whether their fetus has this abnormality.

Now researchers from the Institute of Automation of the Chinese Academy of Sciences (CASIA) have developed an intelligent prediction model to achieve non-invasive screening of Down Syndrome using ultrasound image.

This work was published in JAMA Network Open on June 21.

For decades, ultrasound images have been widely used for screening fetuses with Down Syndrome due to the method's safety, convenience, and low cost. However, using common ultrasound indicators, detection accuracy is less than 80% in actual ultrasound examinations.

Invasive methods such as villus biopsy, amniocentesis, and fetal umbilical venipuncture are also commonly used to detect Down Syndrome.

In this study, the researchers developed a convolutional neural network (CNN) to construct a deep learning (DL) model that could learn representative features from ultrasound images in order to identify fetuses with Down Syndrome.

A CNN is a deep learning algorithm that can take an input image, assign importance (i.e., learnable weights and biases) to various aspects/objects within the image and differentiate one from the other. A CNN can have tens or hundreds of hidden layers. The first layer learns how to detect edges and the last one learns how to detect more complex shapes. This research involved 11 hidden layers.

To further interpret the DL model in a human-readable form, the researchers also used a class activation map (CAM) to shed light on what the model focused on and how it explicitly enabled the CNN to learn discriminative features for risk scores.

The researchers used two-dimensional ultrasound images of the midsagittal plane of the fetal face between 11 and 14 weeks of gestation. Each image was segmented with a bounding box to show only the fetal head. The study comprised a total of 822 cases and controls, with 550 participants in the training set and 272 participants in the validation set.

The researchers found that the first five levels of feature maps visualized by CAM vividly showed the process of learning representative features. The CAM applied to the final layer showed the visualized response regions for the model's decision-making.

"This non-invasive screening model constructed for Down Syndrome in early pregnancy is significantly superior to existing, commonly used manual labeling markers, improving prediction accuracy by more than 15%. It's also superior to the current conventional invasive screening method for Down Syndrome based on maternal serum," said TIAN Jie, corresponding author of the study.

The proposed model is expected to become a non-invasive, inexpensive, and convenient screening tool for Down Syndrome in early pregnancy.

The research is supported by the National Natural Science Foundation of China and the Key R&D Program of the Ministry of Science and Technology.

Zhang L, Dong D, Sun Y, Hu C, Sun C, Wu Q, Tian J.
Development and Validation of a Deep Learning Model to Screen for Trisomy 21 During the First Trimester From Nuchal Ultrasonographic Images.
JAMA Netw Open. 2022 Jun 1;5(6):e2217854. doi: 10.1001/jamanetworkopen.2022.17854

Most Popular Now

Northern Lincolnshire and Goole NHS Foun…

Northern Lincolnshire and Goole NHS Foundation Trust (NLAG) has launched new NHS App features to transform the way patients access and manage their appointments within the NHS. The programme, known...

Orion Health Strengthens French Business…

Orion Health is strengthening its presence in France with the appointment of digital health industry heavyweight, Tristan Debove, to lead its operations. Tristan Debove has more than 25 years of experience...

Genomics England Deploys Sectra Imaging …

Genomics England has completed installation of an enterprise imaging system that will help to support a world-pioneering initiative for cancer research. The programme is linking whole genome sequencing, pathology and...

AI Approach may Help Detect Alzheimer's …

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently...

AI Predicts Cancer Patient Survival by R…

A team of researchers from the University of British Columbia and BC Cancer have developed an artificial intelligence (AI) model that predicts cancer patient survival more accurately and with more...

Virtual Reality Games can be Used as a T…

Virtual reality gamers (VR game) who finished it faster than their fellow gamers also have higher levels of general intelligence and processing capacity. This was the result of a study...

Will Future Computers Run on Human Brain…

A "biocomputer" powered by human brain cells could be developed within our lifetime, according to Johns Hopkins University researchers who expect such technology to exponentially expand the capabilities of modern...

Detecting Anaemia Earlier in Children Us…

Researchers at UCL and University of Ghana have successfully predicted whether children have anaemia using only a set of smartphone images. The study, published in PLOS ONE, brought together researchers and...

AI can Help Optimize CT Scan X-Ray Radia…

Computed tomography (CT) is one of the most powerful and well-established diagnostic tools available to modern medicine. An increasing number of people have been opting for CT scans, raising concerns...

Study Reveals Smartphone Spyware Apps ar…

Smartphone spyware apps that allow people to spy on each other are not only hard to notice and detect, they also will easily leak the sensitive personal information they...

Orion Health Appoints Mark Hindle as Vic…

Orion Health has appointed Mark Hindle as its new vice president for the UK and Ireland. Mark has joined the leading supplier of digital tools to improve healthcare experience from...