AI Techniques Used to Obtain Antibiotic Resistance Patterns

The Universidad Carlos III de Madrid (UC3M) is conducting research that analyses antibiotic resistance patterns with the aim of finding trends that can help decide which treatment to apply to each type of patient and stop the spread of bacteria. This study, recently published in the scientific journal Nature Communications, has been carried out together with the University of Exeter, the University of Birmingham (both in the United Kingdom) and the Westmead Hospital in Sydney (Australia).

In order to observe a bacterial pathogen’s resistance to an antibiotic in clinical environments, a measure called MIC (Minimum Inhibitory Concentration) is used, which is the minimum concentration of antibiotic capable of inhibiting bacterial growth. The greater the MIC of a bacterium against an antibiotic, the greater its resistance.

However, most public databases only contain the frequency of resistant pathogens, which is aggregated data calculated from MIC measurements and predefined resistance thresholds. "For example, for a given pathogen, the antibiotic resistance threshold may be 4: if a bacterium has an MIC of 16, it is considered resistant and is counted when calculating the resistance frequency," says Pablo Catalán, lecturer and researcher in the UC3M Mathematics Department and author of the study. In this regard, the resistance reports that are carried out nationally and by organisations such as the WHO are prepared using this aggregated resistance frequency data.

To conduct this research, the team has analysed a database which is ground-breaking, as it contains raw data on antibiotic resistance. This database, called ATLAS, is managed by Pfizer and has been public since 2018. The working group led by UC3M has compared the information of 600,000 patients from over 70 countries and has used machine learning methods (a type of artificial intelligence technique) to extract resistance evolution patterns.

By analysing this data, the research team has discovered that there are resistance evolution patterns that can be detected when using the raw data (MIC), but which are undetectable using the aggregated data. 'A clear example of this is a pathogen whose MIC is slowly increasing over time, but below the resistance threshold. Using this frequency data we wouldn't be able to say anything, since the resistance frequency remains constant. However, by using MIC data we can detect such a case and be on alert. In the paper, we discuss several clinically relevant cases which have these characteristics. Furthermore, we are the first team to describe this database in depth," says Catalán.

This study makes it possible to design antibiotic treatments that are more effective in controlling infections and curbing the rise of resistance which causes many clinical problems. "The research uses mathematical ideas to find new ways of extracting antibiotic resistance patterns from 6.5 million data points," concludes the research author.

Catalán P, Wood E, Blair JMA, Gudelj I, Iredell JR, Beardmore RE.
Seeking patterns of antibiotic resistance in ATLAS, an open, raw MIC database with patient metadata.
Nat Commun. 2022 May 25;13(1):2917. doi: 10.1038/s41467-022-30635-7

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...