Speech Analysis App Predicts Worsening Heart Failure Before Symptom Onset

A voice analysis app used by heart failure patients at home recognises fluid in the lungs three weeks before an unplanned hospitalisation or escalation in outpatient drug treatment. The late breaking research is presented at Heart Failure 2022, a scientific congress of the European Society of Cardiology (ESC).(1)

"The current standard of care just isn’t good enough for keeping patients with heart failure well and out of the hospital," said study author Professor William Abraham of The Ohio State University, Columbus, US. "The system tested in this study was able to predict 80% of worsening heart failure in advance, compared to a 10-20% success rate for daily weight monitoring shown in previous studies. In the future, speech analysis, together with other clinical information, could be used to modify treatments before a patient’s condition deteriorates and thereby avoid hospital admission."

In patients with heart failure, the heart does not pump blood around the body as well as it should. Fluid is not eliminated properly by the kidneys and this excess fluid builds up in the lungs or legs. Lung congestion is a common cause of hospitalisation, and can be life-threatening. Currently, lung congestion is monitored by asking patients to weigh themselves every day and report any substantial gain. Patients are also requested to report worsening symptoms such as shortness of breath, needing to elevate the head at night to breath comfortably and sleep, and swelling in the feet or ankles.

The speech analysis app used in the current study was previously shown to detect fluid in the lungs of patients hospitalised with acute heart failure.(2) This study investigated its ability to predict worsening heart failure in patients living at home.

The study included 180 patients with heart failure taking guideline recommended medications. At the beginning of the study, as a baseline measurement, participants recorded five sentences on a standard smartphone using the voice analysis app. During the study period, every morning before breakfast patients recorded the same five sentences using the app. The app compared each day's recordings with the baseline versions and alerted research staff when it detected lung congestion. Professor Abraham explained: "The system sets a baseline for each individual patient during a period of stability. It then detects changes in speech over time that indicate fluid in the lungs."

The researchers examined whether the lung congestion alerts predicted heart failure events, defined as at least one worsening symptom which led to hospitalisation or escalation in outpatient drug treatment. They did this by comparing the date of the alert with the dates of subsequent heart failure events. "True alerts" were those issued within a 31-day window before the heart failure event. "False alerts" were those issued outside of the 31-day window prior to an event.

Professor Abraham noted that a "true alert" would continue to be issued daily until the heart failure event occurred. He said: "In this study, the alerts were not acted upon by clinicians since the aim was to determine the diagnostic performance of the tool. In real life, notifications would be sent to the patient's physician until it was responded to. Here we followed patients longitudinally for worsening heart failure events and then looked to see if there was an alert prior to that event - i.e. a 'true alert'. If there was no alert then the system failed to predict the event. Alerts not followed by a worsening heart failure event were 'false alerts'."

During the study, patients provided recordings for an average of 512 days. A total of 49 heart failure events occurred in 37 patients, of which 39 (80%) were correctly predicted by the app and 10 (20%) were missed. True alerts were issued a median of 21 days before worsening symptoms. Each patient received a false alert every 4.8 months on average, resulting in an average of 2.5 erroneous warnings each year.

Professor Abraham said: "In this community-based study, a voice analysis app was able to predict most cases of worsening heart failure well in advance, with very few false alarms. Weight gain and symptoms occur too late to allow medical interventions that keep patients out of the hospital. Future studies will investigate whether changing patient management following an alert, for example by increasing the diuretic dose to get rid of excess fluid, can prevent hospitalisations."

1. The abstract 'HearO™ community study: remote speech analysis to predict worsening heart failure events' has been presented during the session 'Late-Breaking Science - Devices' on 21 May at 15:50 CEST in Room 3.
2. Amir O, Abraham WT, Azzam ZS, et al. Remote speech analysis in the evaluation of hospitalized patients with acute decompensated heart failure. JACC Heart Fail. 2022;10:41-49.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...