Speech Analysis App Predicts Worsening Heart Failure Before Symptom Onset

A voice analysis app used by heart failure patients at home recognises fluid in the lungs three weeks before an unplanned hospitalisation or escalation in outpatient drug treatment. The late breaking research is presented at Heart Failure 2022, a scientific congress of the European Society of Cardiology (ESC).(1)

"The current standard of care just isn’t good enough for keeping patients with heart failure well and out of the hospital," said study author Professor William Abraham of The Ohio State University, Columbus, US. "The system tested in this study was able to predict 80% of worsening heart failure in advance, compared to a 10-20% success rate for daily weight monitoring shown in previous studies. In the future, speech analysis, together with other clinical information, could be used to modify treatments before a patient’s condition deteriorates and thereby avoid hospital admission."

In patients with heart failure, the heart does not pump blood around the body as well as it should. Fluid is not eliminated properly by the kidneys and this excess fluid builds up in the lungs or legs. Lung congestion is a common cause of hospitalisation, and can be life-threatening. Currently, lung congestion is monitored by asking patients to weigh themselves every day and report any substantial gain. Patients are also requested to report worsening symptoms such as shortness of breath, needing to elevate the head at night to breath comfortably and sleep, and swelling in the feet or ankles.

The speech analysis app used in the current study was previously shown to detect fluid in the lungs of patients hospitalised with acute heart failure.(2) This study investigated its ability to predict worsening heart failure in patients living at home.

The study included 180 patients with heart failure taking guideline recommended medications. At the beginning of the study, as a baseline measurement, participants recorded five sentences on a standard smartphone using the voice analysis app. During the study period, every morning before breakfast patients recorded the same five sentences using the app. The app compared each day's recordings with the baseline versions and alerted research staff when it detected lung congestion. Professor Abraham explained: "The system sets a baseline for each individual patient during a period of stability. It then detects changes in speech over time that indicate fluid in the lungs."

The researchers examined whether the lung congestion alerts predicted heart failure events, defined as at least one worsening symptom which led to hospitalisation or escalation in outpatient drug treatment. They did this by comparing the date of the alert with the dates of subsequent heart failure events. "True alerts" were those issued within a 31-day window before the heart failure event. "False alerts" were those issued outside of the 31-day window prior to an event.

Professor Abraham noted that a "true alert" would continue to be issued daily until the heart failure event occurred. He said: "In this study, the alerts were not acted upon by clinicians since the aim was to determine the diagnostic performance of the tool. In real life, notifications would be sent to the patient's physician until it was responded to. Here we followed patients longitudinally for worsening heart failure events and then looked to see if there was an alert prior to that event - i.e. a 'true alert'. If there was no alert then the system failed to predict the event. Alerts not followed by a worsening heart failure event were 'false alerts'."

During the study, patients provided recordings for an average of 512 days. A total of 49 heart failure events occurred in 37 patients, of which 39 (80%) were correctly predicted by the app and 10 (20%) were missed. True alerts were issued a median of 21 days before worsening symptoms. Each patient received a false alert every 4.8 months on average, resulting in an average of 2.5 erroneous warnings each year.

Professor Abraham said: "In this community-based study, a voice analysis app was able to predict most cases of worsening heart failure well in advance, with very few false alarms. Weight gain and symptoms occur too late to allow medical interventions that keep patients out of the hospital. Future studies will investigate whether changing patient management following an alert, for example by increasing the diuretic dose to get rid of excess fluid, can prevent hospitalisations."

1. The abstract 'HearO™ community study: remote speech analysis to predict worsening heart failure events' has been presented during the session 'Late-Breaking Science - Devices' on 21 May at 15:50 CEST in Room 3.
2. Amir O, Abraham WT, Azzam ZS, et al. Remote speech analysis in the evaluation of hospitalized patients with acute decompensated heart failure. JACC Heart Fail. 2022;10:41-49.

Most Popular Now

The Future of Medicine is Data

At the 2023 Annual J.P. Morgan Healthcare Conference, Owkin Co-founder and CEO Thomas Clozel, MD will outline how data is the future of medicine - from the development of new...

Study Surveys Landscape of Apps Built on…

A study led by Regenstrief Institute Research Scientist Titus K. Schleyer, DMD, PhD, is among the first to survey the current landscape of FHIR® apps, providing a snapshot of how...

New Computer Program 'Learns' to Identif…

Genetic mutations cause hundreds of unsolved and untreatable disorders. Among them, DNA mutations in a small percentage of cells, called mosaic mutations, are extremely difficult to detect because they exist...

Applications Open for SpinLab Accelerato…

The start-up accelerator supports entrepreneurial and innovative teams that want to grow sustainably and successfully scale their business model. With a strong hands-on mentality and a lot of passion, the...

Bayer to Accelerate Drug Discovery with …

Bayer AG and Google Cloud today announced a collaboration to drive early drug discovery that will apply Google Cloud's Tensor Processing Units (TPUs), which are custom-developed accelerators designed to run...

Allscripts Announces Corporate Name Chan…

Allscripts Healthcare Solutions, Inc. announced that, effective January 1, 2023, it has changed its name to Veradigm Inc. (NASDAQ: MDRX). Allscripts had been transitioning its solutions to the Veradigm brand...

220M€ Investment in Testing and Experime…

To make the EU the place where AI excellence thrives from the lab to the market, the European Union is setting up world-class Testing and Experimentation Facilities (TEFs) for AI. Together...

AI Tool Developed to Predict Risk of Lun…

Lung cancer is the leading cause of cancer death in the United States and around the world. Low-dose chest computed tomography (LDCT) is recommended to screen people between 50 and...

Artificial Nerve Cells - Almost Like Bio…

Researchers at Linköping University (LiU), Sweden, have created an artificial organic neuron that closely mimics the characteristics of biological nerve cells. This artificial neuron can stimulate natural nerves, making it...

Bayer Acquires Blackford Analysis Ltd. B…

Bayer announced the acquisition of the global strategic imaging AI platform and solutions provider Blackford Analysis Ltd. The acquisition is part of Bayer's strategy to drive innovation in radiology, including...

For Shared Decision-Making, Telemedicine…

Telemedicine may be just as effective as in-person visits when it comes to shared decision-making and communication for patients undergoing a first-time surgery consultation, according to a study published as...

Veradigm Announces Strategic Investment …

Veradigm Inc. (NASDAQ: MDRX), formerly Allscripts Healthcare Solutions, Inc., announced an investment in Holmusk, a global behavioral health real-world evidence and data analytics company, as part of Holmusk's $45 million...