AI Helps Diagnose Post-COVID Lung Problems

A new computer-aided diagnostic tool developed by KAUST (King Abdullah University of Science & Technologym, Saudi Arabia) scientists could help overcome some of the challenges of monitoring lung health following viral infection.

Like other respiratory illnesses, COVID-19 can cause lasting harm to the lungs, but doctors have struggled to visualize this damage. Conventional chest scans do not reliably detect signs of lung scarring and other pulmonary abnormalities, which makes it difficult to track the health and recovery of people with persistent breathing problems and other post-COVID complications.

The new method developed by KAUST - known as Deep-Lung Parenchyma-Enhancing (DLPE) - overlays artificial intelligence algorithms on top of standard chest imaging data to reveal otherwise indiscernible visual features indicative of lung dysfunction.

Through DLPE augmentation, "radiologists can discover and analyze novel sub-visual lung lesions," says computer scientist and computational biologist Xin Gao. "Analysis of these lesions could then help explain patients’ respiratory symptoms," allowing for better disease management and treatment, he adds.

Gao and members of his Structural and Functional Bioinformatics Group and the Computational Bioscience Research Center created the tool, along with artificial intelligence researcher and current KAUST Provost Lawrence Carin and clinical collaborators from Harbin Medical University in China.

The method first eliminates any anatomical features not associated with the lung parenchyma; the tissues involved in gas exchange serve as the main sites of COVID-19 - induced damage. That means removing airways and blood vessels, and then enhancing the pictures of what is left behind to expose lesions that might be missed without the computer's help.

The researchers trained and validated their algorithms using computed tomography (CT) chest scans from thousands of people hospitalized with COVID-19 in China. They refined the method with input from expert radiologists and then applied DLPE in a prospective fashion for dozens of COVID-19 survivors with lung problems, all of whom had experienced severe disease requiring intensive care treatment.

In this way, Gao and his colleagues demonstrated that the tool could reveal signs of pulmonary fibrosis in COVID long-haulers, thus helping to account for shortness of breath, coughing and other lung troubles. A diagnosis, he suggests, that would be impossible with standard CT image analytics.

"With DLPE, for the first time, we proved that long-term CT lesions can explain such symptoms," he says. "Thus, treatments for fibrosis may be very effective at addressing the long-term respiratory complications of COVID-19."

Although the KAUST team developed DLPE primarily with post-COVID recovery in mind, they also tested the platform on chest scans taken from people with various other lung problems, including pneumonia, tuberculosis and lung cancer. The researchers showed how their tool could serve as a broad diagnostic aide for all lung diseases, empowering radiologists to, as Gao puts it, "see the unseen."

Zhou L, Meng X, Huang Y et al.
An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors.
Nat Mach Intell, 2022. doi: 10.1038/s42256-022-00483-7

Most Popular Now

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...