Electricity from body heat

Making calls from a cell phone with no battery, using just the warmth of your hand? Perhaps that's no more than a pipe dream right now. But new circuits are already making it possible to harness body heat for generating electricity.

Numerous items of medical equipment are attached to the body of a patient in the intensive care ward. They monitor the heart rate, blood pressure, body temperature, pulse and breathing rate. This tends to produce quite a jumble of cables, for all these devices require their own electricity supply. In future, medical sensors may be able to function without power from a wall socket. Instead, they will draw all the power they need from the warmth of the human body. The respective data will be sent by a radio signal to the central monitoring station.

In collaboration with colleagues from the Fraunhofer Institute for Physical Measurement Techniques IPM and the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM, research scientists at the Fraunhofer Institute for Integrated Circuits IIS in Erlangen have developed a way of harnessing natural body heat to generate electricity. It works on the principle of thermoelectric generators, TEG for short, made from semiconductor elements. The TEGs extract electrical energy simply from the temperature difference between a hot and a cold environment. Normally, a difference of several tens of degrees would be required in order to generate enough power, but the differences between the body's surface temperature and that of its environment are only a few degrees.

"Only low voltages can be produced from differences like these," explains Peter Spies, manager of this sub-project at the IIS. A conventional TEG delivers roughly 200 millivolts, but electronic devices require at least one or two volts. The engineers have come up with a solution to this problem: "We combined a number of components in a completely new way to create circuits that can operate on 200 millivolts," says Spies. "This has enabled us to build entire electronic systems that do not require an internal battery, but draw their energy from body heat alone."

The scientists are making further improvements to this system: Circuits that are "excited" at 50 millivolts already exist. Peter Spies believes that in future, when further improvements have been made to the switching systems, a temperature difference of only 0.5 degrees will be sufficient to generate electricity.

The scientists have set their eyes on a wide range of possible applications: "Electricity can be generated from heat anyplace where a temperature difference occurs," claims Spies. "That could be on the body, on radiators to meter the heating costs, when monitoring the cooling chain during the transport of refrigerated goods, or in air conditioning systems."

Contact:
Peter Spies
Phone: +49 911 58061 6363
Fax: +49 911 58061 6398
Fraunhofer-Institut für Integrierte Schaltungen
IIS
Am Wolfsmantel 33
91058 Erlangen

For further information, please visit:
http://www.iis.fraunhofer.de

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...