AI may Detect Earliest Signs of Pancreatic Cancer

An artificial intelligence (AI) tool developed by Cedars-Sinai investigators accurately predicted who would develop pancreatic cancer based on what their CT scan images looked like years prior to being diagnosed with the disease. The findings, which may help prevent death through early detection of one of the most challenging cancers to treat, are published in the journal Cancer Biomarkers.

"This AI tool was able to capture and quantify very subtle, early signs of pancreatic ductal adenocarcinoma in CT scans years before occurrence of the disease. These are signs that the human eye would never be able to discern," said Debiao Li, PhD, director of the Biomedical Imaging Research Institute, professor of Biomedical Sciences and Imaging at Cedars-Sinai, and senior and corresponding author of the study. Li is also the Karl Storz Chair in Minimally Invasive Surgery in Honor of George Berci, MD.

Pancreatic ductal adenocarcinoma is not only the most common type of pancreatic cancer, but it’s also the most deadly. Less than 10% of people diagnosed with the disease live more than five years after being diagnosed or starting treatment. But recent studies have reported that finding the cancer early can increase survival rates by as much as 50%. There currently is no easy way to find pancreatic cancer early, however.

People with this type of cancer may experience symptoms such as general abdominal pain or unexplained weight loss, but these symptoms are often ignored or overlooked as signs of the cancer since they are common in many health conditions.

"There are no unique symptoms that can provide an early diagnosis for pancreatic ductal adenocarcinoma," said Stephen J. Pandol, MD, director of Basic and Translational Pancreas Research and program director of the Gastroenterology Fellowship Program at Cedars-Sinai, and another author of the study. "This AI tool may eventually be used to detect early disease in people undergoing CT scans for abdominal pain or other issues."

The investigators reviewed electronic medical records to identify people who were diagnosed with the cancer within the last 15 years and who underwent CT scans six months to three years prior to their diagnosis. These CT images were considered normal at the time they were taken. The team identified 36 patients who met these criteria, the majority of whom had CT scans done in the ER because of abdominal pain.

The AI tool was trained to analyze these pre-diagnostic CT images from people with pancreatic cancer and compare them with CT images from 36 people who didn’t develop the cancer. The investigators reported that the model was 86% accurate in identifying people who would eventually be found to have pancreatic cancer and those who would not develop the cancer.

The AI model picked up on variations on the surface of the pancreas between people with cancer and healthy controls. These textural differences could be the result of molecular changes that occur during the development of pancreatic cancer.

"Our hope is this tool could catch the cancer early enough to make it possible for more people to have their tumor completely removed through surgery," said Touseef Ahmad Qureshi, PhD, a scientist at Cedars-Sinai and first author of the study.

The investigators are currently collecting data from thousands of patients at healthcare sites throughout the U.S. to continue to study the AI tool’s prediction capability.

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...